Optimal Exponential Decay for the Linearized Ellipsoidal BGK Model in Weighted Sobolev Spaces

This paper deals with the asymptotic behavior of solution to the linearized ellipsoidal BGK model in torus. We prove that the solution converges exponentially to the equilibrium in the weighted Sobolev spaces with polynomial weight. Our exponential decay rate e - λ t is optimal in the sense that λ &...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2020-10, Vol.181 (2), p.690-714
Hauptverfasser: Li, Fucai, Sun, Baoyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the asymptotic behavior of solution to the linearized ellipsoidal BGK model in torus. We prove that the solution converges exponentially to the equilibrium in the weighted Sobolev spaces with polynomial weight. Our exponential decay rate e - λ t is optimal in the sense that λ > 0 equals to the spectral gap of the linearized operator in the standard Hilbert space. Our strategy is taking advantage of the quantitative spectral gap estimates in a smaller reference Hilbert space, the factorization method, and the enlargement of the functional space for the associated semigroup.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-020-02595-z