Optimal Exponential Decay for the Linearized Ellipsoidal BGK Model in Weighted Sobolev Spaces
This paper deals with the asymptotic behavior of solution to the linearized ellipsoidal BGK model in torus. We prove that the solution converges exponentially to the equilibrium in the weighted Sobolev spaces with polynomial weight. Our exponential decay rate e - λ t is optimal in the sense that λ &...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2020-10, Vol.181 (2), p.690-714 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the asymptotic behavior of solution to the linearized ellipsoidal BGK model in torus. We prove that the solution converges exponentially to the equilibrium in the weighted Sobolev spaces with polynomial weight. Our exponential decay rate
e
-
λ
t
is optimal in the sense that
λ
>
0
equals to the spectral gap of the linearized operator in the standard Hilbert space. Our strategy is taking advantage of the quantitative spectral gap estimates in a smaller reference Hilbert space, the factorization method, and the enlargement of the functional space for the associated semigroup. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1007/s10955-020-02595-z |