Particle swarm optimization based parameter selection technique for unsupervised discriminant analysis in transfer learning framework

The purpose of transfer learning is to utilize the knowledge gained from the existing (source) domain to enhance the performance on a distinct but related (target) domain. Existing works on transfer learning are not capable of optimizing different quality measures (components) such as minimizing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2020-10, Vol.50 (10), p.3071-3089
Hauptverfasser: Sanodiya, Rakesh Kumar, Mathew, Jimson, Saha, Sriparna, Tripathi, Piyush
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of transfer learning is to utilize the knowledge gained from the existing (source) domain to enhance the performance on a distinct but related (target) domain. Existing works on transfer learning are not capable of optimizing different quality measures (components) such as minimizing the marginal distribution, minimizing the conditional distribution, maximizing the target domain variance, modeling the manifold by utilizing the common geometric properties in the source as well as the target domain at the same time. Moreover, existing transfer learning methods use conventional approaches to determine the appropriate values of their parameters, which is very hectic and time-consuming. Therefore, in order to overcome the drawbacks of existing approaches, we propose a Particle Swarm Optimization based Parameter Selection Approach for Unsupervised Discriminant Analysis (UDATL-PSO) in transfer learning framework. In UDATL-PSO, all the quality measures are considered at the same time, as well as the PSO approach has been used to select the best values of their parameters. Extensive experiments on various transfer learning tasks show that the proposed method has a significant influence on state-of-the-art methods.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-020-01710-7