The Excitation Conditions of CN in TW Hya

We report observations of the cyanide anion, CN, in the disk around TW Hya covering the N = 1−0, N = 2−1, and N = 3−2 transitions. Using line-stacking techniques, 24 hyperfine transitions are detected out of the 30 within the observed frequency ranges. Exploiting the super-spectral resolution from t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-08, Vol.899 (2), p.157
Hauptverfasser: Teague, Richard, Loomis, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report observations of the cyanide anion, CN, in the disk around TW Hya covering the N = 1−0, N = 2−1, and N = 3−2 transitions. Using line-stacking techniques, 24 hyperfine transitions are detected out of the 30 within the observed frequency ranges. Exploiting the super-spectral resolution from the line-stacking method reveals the splitting of hyperfine components previously unresolved by laboratory spectroscopy. All transitions display a similar emission morphology, characterized by an azimuthally symmetric ring, peaking at 45 au (0 75), and a diffuse outer tail extending out to the disk edge at 200 au. Excitation analyses assuming local thermodynamic equilibrium (LTE) yield excitation temperatures in excess of the derived kinetic temperatures based on the local line widths for all fine-structure groups, suggesting assumptions of LTE are invalid. Using the 0D radiative transfer code RADEX, we demonstrate that such non-LTE effects may be present when the local H2 density drops to 107 cm−3 and below. Comparison with models of TW Hya find similar densities at elevated regions in the disk, typically z / r 0.2, consistent with model predictions where CN is formed via vibrationally excited H2 in the disk atmospheric layers where UV irradiation is less attenuated.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aba956