Estimating Horizontal Phase Speeds of a Traveling Ionospheric Disturbance From Digisonde Single Site Vertical Ionograms
Horizontal phase speeds for a medium‐scale traveling ionospheric disturbance (TID) are calculated from three different atmospheric gravity wave (AGW) dispersion relations using vertical phase speeds derived from vertical ionograms measured by a single ionosonde. Observed heights from a network of fo...
Gespeichert in:
Veröffentlicht in: | Radio science 2020-08, Vol.55 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Horizontal phase speeds for a medium‐scale traveling ionospheric disturbance (TID) are calculated from three different atmospheric gravity wave (AGW) dispersion relations using vertical phase speeds derived from vertical ionograms measured by a single ionosonde. Observed heights from a network of four ionosondes in southern New Mexico provide the measured phase velocities. Horizontal phase speeds calculated from the dispersion relations are compared to measured TID speeds as a function of altitude and show general agreement. However, the linear relationship between the vertical and calculated horizontal AGW speeds for this TID frequency and wavenumber range predicts larger variations than the observations. The inclusion of viscosity and thermal diffusion terms in the dispersion relations increases the agreement with measurements. This technique provides a new method of predicting horizontal TID phase speeds from measurements at a single ionosonde site.
Key Points
Horizontal TID phase speeds can be estimated from single site vertical ionograms and an AGW dispersion relation
Predicted horizontal speeds are controlled mainly by the measured vertical speeds with a linear mapping for this low frequency TID
The inclusion of viscosity and thermal diffusion in the AGW dispersion relations increases the accuracy of horizontal speed estimates |
---|---|
ISSN: | 0048-6604 1944-799X |
DOI: | 10.1029/2020RS007089 |