Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds

In this paper, we present two inexact scalarization proximal point methods to solve quasiconvex multiobjective minimization problems on Hadamard manifolds. Under standard assumptions on the problem, we prove that the two sequences generated by the algorithms converge to a Pareto critical point of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2020-09, Vol.186 (3), p.879-898
Hauptverfasser: Papa Quiroz, Erik Alex, Baygorrea Cusihuallpa, Nancy, Maculan, Nelson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present two inexact scalarization proximal point methods to solve quasiconvex multiobjective minimization problems on Hadamard manifolds. Under standard assumptions on the problem, we prove that the two sequences generated by the algorithms converge to a Pareto critical point of the problem and, for the convex case, the sequences converge to a weak Pareto solution. Finally, we explore an application of the method to demand theory in economy, which can be dealt with using the proposed algorithm.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-020-01725-7