Depth-distribution of lake benthic diatom assemblages in relation to light availability and substrate: implications for paleolimnological studies

We analyzed the depth distributions of benthic diatoms in two adjacent, but hydrologically distinct subalpine lakes (Lakes Soiernseen, S-Germany). Lake Unterer Soiernsee is affected by marked water-level fluctuations and is light-penetrated to the bottom most of the year, while Lake Oberer Soiernsee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of paleolimnology 2020-10, Vol.64 (3), p.315-334
Hauptverfasser: Hofmann, Andrea M., Geist, Juergen, Nowotny, Lena, Raeder, Uta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We analyzed the depth distributions of benthic diatoms in two adjacent, but hydrologically distinct subalpine lakes (Lakes Soiernseen, S-Germany). Lake Unterer Soiernsee is affected by marked water-level fluctuations and is light-penetrated to the bottom most of the year, while Lake Oberer Soiernsee provides more stable conditions and an extended aphotic zone. Mixed samples of epiphytic, epilithic, epipsammic and epipelic periphyton were taken in one-meter depth steps by scuba divers. Most of the common benthic diatoms occurred in distinct depth-areas. RDA analyses showed that depth was strongly correlated with species distribution in both lakes. Depth-constrained cluster analyses indicated three distinct diatom community zones in each lake. A shallow littoral zone hosting mainly epiphytic and epilithic species and a deeper littoral zone with mainly epipsammic and epipelic taxa existed in both lakes. Additionally, a highly disturbed near-shore littoral zone with diatoms adapted to unstable conditions (aerophilic taxa, pioneer species) was found in Lake Unterer Soiernsee, and a deep-water pelagic zone with mainly planktonic taxa in Lake Oberer Soiernsee. Light availability, substrate, physical stressors and nutrient concentrations were linked closely with water depth. While light availability affected the ratio of benthic and planktonic diatoms, substrate type influenced benthic diatom assemblage structures. Diatoms occurring in surficial sediments of the aphotic zone represent an ideal cross-section of the recent diatom assemblage of the lake, including benthic and planktonic species. However, sediment samples taken in light-flooded depths are inappropriate for studies based on shifts between benthic and planktonic taxa, because in situ benthic species dominate the surface-sediment assemblages, while settled tychoplanktonic and planktonic species occur less frequently. A diatom-inferred depth model was created for each lake to prove the usability for down-core studies using weighted-averaging approaches. For both lakes these models are highly appropriate to reconstruct past fluctuations in water-transparency or lake-level. With regard to the development of diatom-based TP-transfer-functions for Bavarian mountain lakes, we found it is highly important to consider lake depth and transparency. Based on the findings of this study we recommend the creation of two different training-sets, one for deep or low-transparency lakes with an aphotic zone including both
ISSN:0921-2728
1573-0417
DOI:10.1007/s10933-020-00139-9