Structured Autocorrelation Matrix Estimation for Coprime Arrays

A coprime array receiver processes a collection of received-signal snapshots to estimate the autocorrelation matrix of a larger (virtual) uniform linear array, known as coarray. By the received-signal model, this matrix has to be (i) Positive-Definite, (ii) Hermitian, (iii) Toeplitz, and (iv) its no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-08
Hauptverfasser: Chachlakis, Dimitris G, Markopoulos, Panos P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chachlakis, Dimitris G
Markopoulos, Panos P
description A coprime array receiver processes a collection of received-signal snapshots to estimate the autocorrelation matrix of a larger (virtual) uniform linear array, known as coarray. By the received-signal model, this matrix has to be (i) Positive-Definite, (ii) Hermitian, (iii) Toeplitz, and (iv) its noise-subspace eigenvalues have to be equal. Existing coarray autocorrelation matrix estimates satisfy a subset of the above conditions. In this work, we propose an optimization framework which offers a novel estimate satisfying all four conditions. Numerical studies illustrate that the proposed estimate outperforms standard counterparts, both in autocorrelation matrix estimation error and Direction-of-Arrival estimation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2438804546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438804546</sourcerecordid><originalsourceid>FETCH-proquest_journals_24388045463</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_GGgtTPMwdyFitGlVexl0hBH12p07UH9fUB_Q6sA5Z8USqdQhK7SUG5aGMAghZH6UxqiEnW6EsaWIruNlJGgB0Y2WPMz8agn9k9eB_PQ1PSCvYEE_OV4i2lfYsXVvx-DSH7dsf67v1SVbEB7RBWoGiDh_UiO1Kgqhjc7Vf9cbXMc5Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438804546</pqid></control><display><type>article</type><title>Structured Autocorrelation Matrix Estimation for Coprime Arrays</title><source>Freely Accessible Journals</source><creator>Chachlakis, Dimitris G ; Markopoulos, Panos P</creator><creatorcontrib>Chachlakis, Dimitris G ; Markopoulos, Panos P</creatorcontrib><description>A coprime array receiver processes a collection of received-signal snapshots to estimate the autocorrelation matrix of a larger (virtual) uniform linear array, known as coarray. By the received-signal model, this matrix has to be (i) Positive-Definite, (ii) Hermitian, (iii) Toeplitz, and (iv) its noise-subspace eigenvalues have to be equal. Existing coarray autocorrelation matrix estimates satisfy a subset of the above conditions. In this work, we propose an optimization framework which offers a novel estimate satisfying all four conditions. Numerical studies illustrate that the proposed estimate outperforms standard counterparts, both in autocorrelation matrix estimation error and Direction-of-Arrival estimation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autocorrelation ; Direction of arrival ; Eigenvalues ; Linear arrays ; Mathematical analysis ; Matrix methods ; Optimization ; Signal processing</subject><ispartof>arXiv.org, 2020-08</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Chachlakis, Dimitris G</creatorcontrib><creatorcontrib>Markopoulos, Panos P</creatorcontrib><title>Structured Autocorrelation Matrix Estimation for Coprime Arrays</title><title>arXiv.org</title><description>A coprime array receiver processes a collection of received-signal snapshots to estimate the autocorrelation matrix of a larger (virtual) uniform linear array, known as coarray. By the received-signal model, this matrix has to be (i) Positive-Definite, (ii) Hermitian, (iii) Toeplitz, and (iv) its noise-subspace eigenvalues have to be equal. Existing coarray autocorrelation matrix estimates satisfy a subset of the above conditions. In this work, we propose an optimization framework which offers a novel estimate satisfying all four conditions. Numerical studies illustrate that the proposed estimate outperforms standard counterparts, both in autocorrelation matrix estimation error and Direction-of-Arrival estimation.</description><subject>Autocorrelation</subject><subject>Direction of arrival</subject><subject>Eigenvalues</subject><subject>Linear arrays</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Optimization</subject><subject>Signal processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_GGgtTPMwdyFitGlVexl0hBH12p07UH9fUB_Q6sA5Z8USqdQhK7SUG5aGMAghZH6UxqiEnW6EsaWIruNlJGgB0Y2WPMz8agn9k9eB_PQ1PSCvYEE_OV4i2lfYsXVvx-DSH7dsf67v1SVbEB7RBWoGiDh_UiO1Kgqhjc7Vf9cbXMc5Zg</recordid><startdate>20200827</startdate><enddate>20200827</enddate><creator>Chachlakis, Dimitris G</creator><creator>Markopoulos, Panos P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200827</creationdate><title>Structured Autocorrelation Matrix Estimation for Coprime Arrays</title><author>Chachlakis, Dimitris G ; Markopoulos, Panos P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24388045463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autocorrelation</topic><topic>Direction of arrival</topic><topic>Eigenvalues</topic><topic>Linear arrays</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Optimization</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Chachlakis, Dimitris G</creatorcontrib><creatorcontrib>Markopoulos, Panos P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chachlakis, Dimitris G</au><au>Markopoulos, Panos P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Structured Autocorrelation Matrix Estimation for Coprime Arrays</atitle><jtitle>arXiv.org</jtitle><date>2020-08-27</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>A coprime array receiver processes a collection of received-signal snapshots to estimate the autocorrelation matrix of a larger (virtual) uniform linear array, known as coarray. By the received-signal model, this matrix has to be (i) Positive-Definite, (ii) Hermitian, (iii) Toeplitz, and (iv) its noise-subspace eigenvalues have to be equal. Existing coarray autocorrelation matrix estimates satisfy a subset of the above conditions. In this work, we propose an optimization framework which offers a novel estimate satisfying all four conditions. Numerical studies illustrate that the proposed estimate outperforms standard counterparts, both in autocorrelation matrix estimation error and Direction-of-Arrival estimation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2438804546
source Freely Accessible Journals
subjects Autocorrelation
Direction of arrival
Eigenvalues
Linear arrays
Mathematical analysis
Matrix methods
Optimization
Signal processing
title Structured Autocorrelation Matrix Estimation for Coprime Arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Structured%20Autocorrelation%20Matrix%20Estimation%20for%20Coprime%20Arrays&rft.jtitle=arXiv.org&rft.au=Chachlakis,%20Dimitris%20G&rft.date=2020-08-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2438804546%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438804546&rft_id=info:pmid/&rfr_iscdi=true