Structured Autocorrelation Matrix Estimation for Coprime Arrays
A coprime array receiver processes a collection of received-signal snapshots to estimate the autocorrelation matrix of a larger (virtual) uniform linear array, known as coarray. By the received-signal model, this matrix has to be (i) Positive-Definite, (ii) Hermitian, (iii) Toeplitz, and (iv) its no...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A coprime array receiver processes a collection of received-signal snapshots to estimate the autocorrelation matrix of a larger (virtual) uniform linear array, known as coarray. By the received-signal model, this matrix has to be (i) Positive-Definite, (ii) Hermitian, (iii) Toeplitz, and (iv) its noise-subspace eigenvalues have to be equal. Existing coarray autocorrelation matrix estimates satisfy a subset of the above conditions. In this work, we propose an optimization framework which offers a novel estimate satisfying all four conditions. Numerical studies illustrate that the proposed estimate outperforms standard counterparts, both in autocorrelation matrix estimation error and Direction-of-Arrival estimation. |
---|---|
ISSN: | 2331-8422 |