Next-Best View Policy for 3D Reconstruction

Manually selecting viewpoints or using commonly available flight planners like circular path for large-scale 3D reconstruction using drones often results in incomplete 3D models. Recent works have relied on hand-engineered heuristics such as information gain to select the Next-Best Views. In this wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
Hauptverfasser: Peralta, Daryl, Casimiro, Joel, Nilles, Aldrin Michael, Justine Aletta Aguilar, Atienza, Rowel, Cajote, Rhandley
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manually selecting viewpoints or using commonly available flight planners like circular path for large-scale 3D reconstruction using drones often results in incomplete 3D models. Recent works have relied on hand-engineered heuristics such as information gain to select the Next-Best Views. In this work, we present a learning-based algorithm called Scan-RL to learn a Next-Best View (NBV) Policy. To train and evaluate the agent, we created Houses3K, a dataset of 3D house models. Our experiments show that using Scan-RL, the agent can scan houses with fewer number of steps and a shorter distance compared to our baseline circular path. Experimental results also demonstrate that a single NBV policy can be used to scan multiple houses including those that were not seen during training. The link to Scan-RL is available at https://github.com/darylperalta/ScanRL and Houses3K dataset can be found at https://github.com/darylperalta/Houses3K.
ISSN:2331-8422