Uniform decay rates for a suspension bridge with locally distributed nonlinear damping

We study a nonlocal evolution equation modeling the deformation of a bridge, either a footbridge or a suspension bridge. Contrarily to the previous literature we prove the asymptotic stability of the considered model with a minimum amount of damping which represents less cost of material. The result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Franklin Institute 2020-03, Vol.357 (4), p.2388-2419
Hauptverfasser: Cavalcanti, André D. Domingos, Cavalcanti, Marcelo M., Corrêa, Wellington J., Hajjej, Zayd, Cortés., Mauricio Sepúlveda, Asem, Rodrigo Véjar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a nonlocal evolution equation modeling the deformation of a bridge, either a footbridge or a suspension bridge. Contrarily to the previous literature we prove the asymptotic stability of the considered model with a minimum amount of damping which represents less cost of material. The result is also numerically proved.
ISSN:0016-0032
1879-2693
0016-0032
DOI:10.1016/j.jfranklin.2020.01.004