An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays
This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2020-03, Vol.357 (4), p.2282-2294 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2294 |
---|---|
container_issue | 4 |
container_start_page | 2282 |
container_title | Journal of the Franklin Institute |
container_volume | 357 |
creator | Jiao, Jianmin Zhang, Rui |
description | This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality with the Wirtinger-based integral inequality, a new stability criterion of systems with additive time-varying delays is proposed. Meanwhile, an improved stability criterion of systems with a single time-varying in a range is also obtained. Finally, two numerical examples are employed to illustrate the advantage of the obtained theoretical results. |
doi_str_mv | 10.1016/j.jfranklin.2019.11.065 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438723069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003219308695</els_id><sourcerecordid>2438723069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-fc297235d4f0e90f1237d2db76610f9bca1d9f68408cac7d7029b0cda5290a433</originalsourceid><addsrcrecordid>eNqFkM2KGzEQhEVIII6zzxBBzjNpSeMZ62iW_MFCLslZyFJr05OxxivJjucN9rFXi5dcc2oaqoqqj7EPAloBov80tmNINv6ZKLYShG6FaKHfvGIrsR10I3utXrMVVGkDoORb9i7nsb6DAFixx13keCkYPXqe0NExzc5O08LdHM944QdbEl04RXw42YnKwm30nErm9nicyNlCc-Rl5rnYPb0I7LRkynwOPC-54CHzv1R-c-s9FTojL3TA5mzTQvGee5zskt-zN8FOGW9e7pr9-vL55-235u7H1--3u7vGqU6VJjipB6k2vguAGoKQavDS74e-FxD03lnhdei3HWyddYMfQOo9OG83UoPtlFqzj9fcOvThhLmYcT6l2jgb2altzYZKbM2Gq8qlOeeEwRwTHWphI8A8Yzej-YfdPGM3QpiKvTp3VyfWEWfCZLIjjA49VbzF-Jn-m_EECa2TvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438723069</pqid></control><display><type>article</type><title>An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jiao, Jianmin ; Zhang, Rui</creator><creatorcontrib>Jiao, Jianmin ; Zhang, Rui</creatorcontrib><description>This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality with the Wirtinger-based integral inequality, a new stability criterion of systems with additive time-varying delays is proposed. Meanwhile, an improved stability criterion of systems with a single time-varying in a range is also obtained. Finally, two numerical examples are employed to illustrate the advantage of the obtained theoretical results.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2019.11.065</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Convex analysis ; Matrix ; Stability analysis ; Stability criteria ; Studies ; Systems analysis ; Systems stability</subject><ispartof>Journal of the Franklin Institute, 2020-03, Vol.357 (4), p.2282-2294</ispartof><rights>2019 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-fc297235d4f0e90f1237d2db76610f9bca1d9f68408cac7d7029b0cda5290a433</citedby><cites>FETCH-LOGICAL-c343t-fc297235d4f0e90f1237d2db76610f9bca1d9f68408cac7d7029b0cda5290a433</cites><orcidid>0000-0002-9519-8675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2019.11.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jiao, Jianmin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><title>An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays</title><title>Journal of the Franklin Institute</title><description>This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality with the Wirtinger-based integral inequality, a new stability criterion of systems with additive time-varying delays is proposed. Meanwhile, an improved stability criterion of systems with a single time-varying in a range is also obtained. Finally, two numerical examples are employed to illustrate the advantage of the obtained theoretical results.</description><subject>Convex analysis</subject><subject>Matrix</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Studies</subject><subject>Systems analysis</subject><subject>Systems stability</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM2KGzEQhEVIII6zzxBBzjNpSeMZ62iW_MFCLslZyFJr05OxxivJjucN9rFXi5dcc2oaqoqqj7EPAloBov80tmNINv6ZKLYShG6FaKHfvGIrsR10I3utXrMVVGkDoORb9i7nsb6DAFixx13keCkYPXqe0NExzc5O08LdHM944QdbEl04RXw42YnKwm30nErm9nicyNlCc-Rl5rnYPb0I7LRkynwOPC-54CHzv1R-c-s9FTojL3TA5mzTQvGee5zskt-zN8FOGW9e7pr9-vL55-235u7H1--3u7vGqU6VJjipB6k2vguAGoKQavDS74e-FxD03lnhdei3HWyddYMfQOo9OG83UoPtlFqzj9fcOvThhLmYcT6l2jgb2altzYZKbM2Gq8qlOeeEwRwTHWphI8A8Yzej-YfdPGM3QpiKvTp3VyfWEWfCZLIjjA49VbzF-Jn-m_EECa2TvA</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Jiao, Jianmin</creator><creator>Zhang, Rui</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9519-8675</orcidid></search><sort><creationdate>202003</creationdate><title>An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays</title><author>Jiao, Jianmin ; Zhang, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-fc297235d4f0e90f1237d2db76610f9bca1d9f68408cac7d7029b0cda5290a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convex analysis</topic><topic>Matrix</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Studies</topic><topic>Systems analysis</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Jianmin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Jianmin</au><au>Zhang, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2020-03</date><risdate>2020</risdate><volume>357</volume><issue>4</issue><spage>2282</spage><epage>2294</epage><pages>2282-2294</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality with the Wirtinger-based integral inequality, a new stability criterion of systems with additive time-varying delays is proposed. Meanwhile, an improved stability criterion of systems with a single time-varying in a range is also obtained. Finally, two numerical examples are employed to illustrate the advantage of the obtained theoretical results.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2019.11.065</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9519-8675</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2020-03, Vol.357 (4), p.2282-2294 |
issn | 0016-0032 1879-2693 0016-0032 |
language | eng |
recordid | cdi_proquest_journals_2438723069 |
source | Access via ScienceDirect (Elsevier) |
subjects | Convex analysis Matrix Stability analysis Stability criteria Studies Systems analysis Systems stability |
title | An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20reciprocally%20convex%20matrix%20inequality%20and%20its%20application%20to%20stability%20analysis%20of%20systems%20with%20additive%20time-varying%20delays&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Jiao,%20Jianmin&rft.date=2020-03&rft.volume=357&rft.issue=4&rft.spage=2282&rft.epage=2294&rft.pages=2282-2294&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2019.11.065&rft_dat=%3Cproquest_cross%3E2438723069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438723069&rft_id=info:pmid/&rft_els_id=S0016003219308695&rfr_iscdi=true |