An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays

This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Franklin Institute 2020-03, Vol.357 (4), p.2282-2294
Hauptverfasser: Jiao, Jianmin, Zhang, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2294
container_issue 4
container_start_page 2282
container_title Journal of the Franklin Institute
container_volume 357
creator Jiao, Jianmin
Zhang, Rui
description This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality with the Wirtinger-based integral inequality, a new stability criterion of systems with additive time-varying delays is proposed. Meanwhile, an improved stability criterion of systems with a single time-varying in a range is also obtained. Finally, two numerical examples are employed to illustrate the advantage of the obtained theoretical results.
doi_str_mv 10.1016/j.jfranklin.2019.11.065
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2438723069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003219308695</els_id><sourcerecordid>2438723069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-fc297235d4f0e90f1237d2db76610f9bca1d9f68408cac7d7029b0cda5290a433</originalsourceid><addsrcrecordid>eNqFkM2KGzEQhEVIII6zzxBBzjNpSeMZ62iW_MFCLslZyFJr05OxxivJjucN9rFXi5dcc2oaqoqqj7EPAloBov80tmNINv6ZKLYShG6FaKHfvGIrsR10I3utXrMVVGkDoORb9i7nsb6DAFixx13keCkYPXqe0NExzc5O08LdHM944QdbEl04RXw42YnKwm30nErm9nicyNlCc-Rl5rnYPb0I7LRkynwOPC-54CHzv1R-c-s9FTojL3TA5mzTQvGee5zskt-zN8FOGW9e7pr9-vL55-235u7H1--3u7vGqU6VJjipB6k2vguAGoKQavDS74e-FxD03lnhdei3HWyddYMfQOo9OG83UoPtlFqzj9fcOvThhLmYcT6l2jgb2altzYZKbM2Gq8qlOeeEwRwTHWphI8A8Yzej-YfdPGM3QpiKvTp3VyfWEWfCZLIjjA49VbzF-Jn-m_EECa2TvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438723069</pqid></control><display><type>article</type><title>An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jiao, Jianmin ; Zhang, Rui</creator><creatorcontrib>Jiao, Jianmin ; Zhang, Rui</creatorcontrib><description>This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality with the Wirtinger-based integral inequality, a new stability criterion of systems with additive time-varying delays is proposed. Meanwhile, an improved stability criterion of systems with a single time-varying in a range is also obtained. Finally, two numerical examples are employed to illustrate the advantage of the obtained theoretical results.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2019.11.065</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Convex analysis ; Matrix ; Stability analysis ; Stability criteria ; Studies ; Systems analysis ; Systems stability</subject><ispartof>Journal of the Franklin Institute, 2020-03, Vol.357 (4), p.2282-2294</ispartof><rights>2019 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Mar 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-fc297235d4f0e90f1237d2db76610f9bca1d9f68408cac7d7029b0cda5290a433</citedby><cites>FETCH-LOGICAL-c343t-fc297235d4f0e90f1237d2db76610f9bca1d9f68408cac7d7029b0cda5290a433</cites><orcidid>0000-0002-9519-8675</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2019.11.065$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jiao, Jianmin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><title>An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays</title><title>Journal of the Franklin Institute</title><description>This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality with the Wirtinger-based integral inequality, a new stability criterion of systems with additive time-varying delays is proposed. Meanwhile, an improved stability criterion of systems with a single time-varying in a range is also obtained. Finally, two numerical examples are employed to illustrate the advantage of the obtained theoretical results.</description><subject>Convex analysis</subject><subject>Matrix</subject><subject>Stability analysis</subject><subject>Stability criteria</subject><subject>Studies</subject><subject>Systems analysis</subject><subject>Systems stability</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM2KGzEQhEVIII6zzxBBzjNpSeMZ62iW_MFCLslZyFJr05OxxivJjucN9rFXi5dcc2oaqoqqj7EPAloBov80tmNINv6ZKLYShG6FaKHfvGIrsR10I3utXrMVVGkDoORb9i7nsb6DAFixx13keCkYPXqe0NExzc5O08LdHM944QdbEl04RXw42YnKwm30nErm9nicyNlCc-Rl5rnYPb0I7LRkynwOPC-54CHzv1R-c-s9FTojL3TA5mzTQvGee5zskt-zN8FOGW9e7pr9-vL55-235u7H1--3u7vGqU6VJjipB6k2vguAGoKQavDS74e-FxD03lnhdei3HWyddYMfQOo9OG83UoPtlFqzj9fcOvThhLmYcT6l2jgb2altzYZKbM2Gq8qlOeeEwRwTHWphI8A8Yzej-YfdPGM3QpiKvTp3VyfWEWfCZLIjjA49VbzF-Jn-m_EECa2TvA</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Jiao, Jianmin</creator><creator>Zhang, Rui</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-9519-8675</orcidid></search><sort><creationdate>202003</creationdate><title>An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays</title><author>Jiao, Jianmin ; Zhang, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-fc297235d4f0e90f1237d2db76610f9bca1d9f68408cac7d7029b0cda5290a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convex analysis</topic><topic>Matrix</topic><topic>Stability analysis</topic><topic>Stability criteria</topic><topic>Studies</topic><topic>Systems analysis</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Jianmin</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Jianmin</au><au>Zhang, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2020-03</date><risdate>2020</risdate><volume>357</volume><issue>4</issue><spage>2282</spage><epage>2294</epage><pages>2282-2294</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality with the Wirtinger-based integral inequality, a new stability criterion of systems with additive time-varying delays is proposed. Meanwhile, an improved stability criterion of systems with a single time-varying in a range is also obtained. Finally, two numerical examples are employed to illustrate the advantage of the obtained theoretical results.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2019.11.065</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9519-8675</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2020-03, Vol.357 (4), p.2282-2294
issn 0016-0032
1879-2693
0016-0032
language eng
recordid cdi_proquest_journals_2438723069
source Access via ScienceDirect (Elsevier)
subjects Convex analysis
Matrix
Stability analysis
Stability criteria
Studies
Systems analysis
Systems stability
title An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20reciprocally%20convex%20matrix%20inequality%20and%20its%20application%20to%20stability%20analysis%20of%20systems%20with%20additive%20time-varying%20delays&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Jiao,%20Jianmin&rft.date=2020-03&rft.volume=357&rft.issue=4&rft.spage=2282&rft.epage=2294&rft.pages=2282-2294&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2019.11.065&rft_dat=%3Cproquest_cross%3E2438723069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438723069&rft_id=info:pmid/&rft_els_id=S0016003219308695&rfr_iscdi=true