An extended reciprocally convex matrix inequality and its application to stability analysis of systems with additive time-varying delays
This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2020-03, Vol.357 (4), p.2282-2294 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the stability analysis of systems with additive time-varying delays. First, an extended reciprocally convex matrix inequality is presented, which is a generalization of the existing reciprocally convex matrix inequalities. Second, combining the proposed matrix inequality with the Wirtinger-based integral inequality, a new stability criterion of systems with additive time-varying delays is proposed. Meanwhile, an improved stability criterion of systems with a single time-varying in a range is also obtained. Finally, two numerical examples are employed to illustrate the advantage of the obtained theoretical results. |
---|---|
ISSN: | 0016-0032 1879-2693 0016-0032 |
DOI: | 10.1016/j.jfranklin.2019.11.065 |