Smart Switching Strategy-Based Supervision Rule to Mitigate the Problem of Pilot Contamination in Massive MIMO Systems
Despite the large benefits that can be fulfilled through the exploitation of Massive Multi-input Multioutput (M-MIMO), this technology still constrained by a well-known constraint, called as pilot contamination problem (PCP), which is the main consequence of, simultaneously, reusing the same set of...
Gespeichert in:
Veröffentlicht in: | Wireless communications and mobile computing 2020, Vol.2020 (2020), p.1-13, Article 8868597 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite the large benefits that can be fulfilled through the exploitation of Massive Multi-input Multioutput (M-MIMO), this technology still constrained by a well-known constraint, called as pilot contamination problem (PCP), which is the main consequence of, simultaneously, reusing the same set of orthogonal pilot sequences (OPSs) for the users of several cells. Due to the scarcity of the OPS resources, the reuse of the same set of the OPSs for the users of different cells is unavoidable. Hence, this work proposes a novel decontaminating strategy, which is aimed at guaranteeing a trade-off between the use of the OPSs and the mitigation of the PCP. Specifically, to make the use of the available OPSs better, we propose the consolidation of two powerful decontaminating strategies. Under a derived supervision rule (SR), these strategies are the soft pilot reuse-based multicell block diagonalization precoding (SPR-MBDP) and the weighted graph coloring-based pilot assignment (WGC-PA). The SR enables the switching mechanism between the two strategies, which leads to address the PCP with a fewer number of the OPSs compared to the SPR-MBDP, therefore boosting the per-cell achievable rate. Simulation results prove the effectiveness of our proposed strategy. |
---|---|
ISSN: | 1530-8669 1530-8677 |
DOI: | 10.1155/2020/8868597 |