Ship Trajectory Reconstruction from AIS Sensory Data via Data Quality Control and Prediction

Accurate ship trajectory plays an important role for maritime traffic control and management, and ship trajectory prediction with Automatic Identification System (AIS) data has attracted considerable research attentions in maritime traffic community. The raw AIS data may be contaminated by noises, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-9
Hauptverfasser: Xiong, Yong, Xiong, Pengwen, Zheng, Hailin, Yang, Yongsheng, Ling, Jun, Chen, Xinqiang, Postolache, Octavian Adrian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate ship trajectory plays an important role for maritime traffic control and management, and ship trajectory prediction with Automatic Identification System (AIS) data has attracted considerable research attentions in maritime traffic community. The raw AIS data may be contaminated by noises, which limits its usage in maritime traffic management applications in real world. To address the issue, we proposed an ensemble ship trajectory reconstruction framework combining data quality control procedure and prediction module. More specifically, the proposed framework implemented the data quality control procedure in three steps: trajectory separation, data denoising, and normalization. In greater detail, the data quality control procedure firstly identified outliers from the raw ship AIS data sample, which were further cleansed with the moving average model. Then, the denoised data were normalized into evenly distributed data series (in terms of time interval). After that, the proposed framework predicted ship trajectory with the artificial neural network. We verified the proposed model performance with two ship trajectories downloaded from public accessible AIS data base.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/7191296