Parameter Recognition of Mode-Converted Wave in Single-Source Ultrasound Using Gabor Transform for Bolt Axial Stress Evaluation

In this paper, a novel parameter recognition method of mode-converted wave in single-source ultrasound is put forward and applied to the estimation of axial stresses in bolts. To overcome the distortion and aliasing of the mode-converted wave in single-source ultrasonic signal, a time-frequency para...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2020, Vol.2020 (2020), p.1-11
Hauptverfasser: Chen, Ping, Song, Wei, He, Xingliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a novel parameter recognition method of mode-converted wave in single-source ultrasound is put forward and applied to the estimation of axial stresses in bolts. To overcome the distortion and aliasing of the mode-converted wave in single-source ultrasonic signal, a time-frequency parameter recognition method based on the Gabor transform is introduced to recognize the accurate time of flight (TOF) of the mode-converted wave. Based on the mode conversion of the single-source longitudinal ultrasound, a new nonlinear evaluation model based on acoustoelastic equation is derived to determine the axial stress of bolt. The performance of the proposed method is evaluated by comparing it with the commonly used TOF ratio method of longitudinal wave and shear wave (L-S). The experiment result shows that the proposed method is more effective in detecting the connection status of bolted joints than the traditional L-S method.
ISSN:1687-725X
1687-7268
DOI:10.1155/2020/8883845