Use of a Target‐Mediated Drug Disposition Model to Predict the Human Pharmacokinetics and Target Occupancy of GC1118, an Anti‐epidermal Growth Factor Receptor Antibody

GC1118 is an anti‐epidermal growth factor receptor (EGFR) monoclonal antibody that is currently under clinical development. In this study, the pharmacokinetics (PK) of GC1118 were modelled in monkeys to predict human PK and receptor occupancy (RO) profiles. The serum concentrations of GC1118 and its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Basic & clinical pharmacology & toxicology 2017-03, Vol.120 (3), p.243-249
Hauptverfasser: Park, Wan‐Su, Han, Seunghoon, Lee, Jongtae, Hong, Taegon, Won, Jonghwa, Lim, Yangmi, Lee, Kyuhyun, Byun, Han Yeul, Yim, Dong‐Seok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:GC1118 is an anti‐epidermal growth factor receptor (EGFR) monoclonal antibody that is currently under clinical development. In this study, the pharmacokinetics (PK) of GC1118 were modelled in monkeys to predict human PK and receptor occupancy (RO) profiles. The serum concentrations of GC1118 and its comparator (cetuximab) were assessed in monkeys with a non‐compartmental analysis and a target‐mediated drug disposition (TMDD) model after intravenous infusion (3–25 mg/kg) of these drugs. The scaling exponent of the EGFR synthesis rate was determined using a sensitivity analysis. The human cetuximab exposures were simulated by applying different exponents (0.7–1.0) for the EGFR synthesis rate in the allometric monkey PK model. Simulated Cmax and area under the curve values therein were compared with those previously reported in the literature to find the best exponent for the EGFR synthesis rate in human beings. The TMDD model appropriately described the monkey PK profile, which showed a decrease in clearance (CL; 1.2–0.4 ml/hr/kg) as the dose increased. The exponents for CL (0.75) and volume of distribution (Vd; 1.0) were used for the allometric scaling to predict human PK. The allometric coefficient for the EGFR synthesis rate chosen by the sensitivity analysis was 0.85, and the RO profiles that could not be measured experimentally were estimated based on the predicted concentrations of the total target and the drug–target complex. Our monkey TMDD model successfully predicts human PK and RO profiles of GC1118 and can be used to determine the appropriate dose for a first‐in‐human study investigating this drug.
ISSN:1742-7835
1742-7843
DOI:10.1111/bcpt.12675