Multibody dynamics analysis (MDA) as a numerical modelling tool to reconstruct the function and palaeobiology of extinct organisms

Recent advances in computer technology have substantially changed the field of palaeontology in the last two decades. Palaeontologists now have a whole new arsenal of powerful digital techniques available to study fossil organisms in unprecedented detail and to test hypotheses regarding function and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Palaeontology 2020-09, Vol.63 (5), p.703-715
Hauptverfasser: Lautenschlager, Stephan, Lomax, Barry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent advances in computer technology have substantially changed the field of palaeontology in the last two decades. Palaeontologists now have a whole new arsenal of powerful digital techniques available to study fossil organisms in unprecedented detail and to test hypotheses regarding function and behaviour. Multibody dynamics analysis (MDA) is one of these techniques and although it originated as a tool used in the engineering and automotive industry, it holds great potential to address palaeontological questions as well. MDA allows the simulation of dynamic movements in complex objects consisting of multiple linked components. As such, this technique is ideally suited to model biological structures and to obtain quantifiable results that can be used to test the function of musculoskeletal systems rigorously. However, despite these advantages, MDA has seen a slow uptake by the palaeontological community. The most likely reason for this lies in the steep learning curve and complexity of the method. This paper provides an overview of the underlying principles of MDA and outlines the main steps involved in conducting analyses. A number of recent studies using MDA to reconstruct the palaeobiology of fossil organisms are presented and the potential for future studies is discussed. Similar to other computational techniques, including finite element analysis and computational fluid dynamics, the non‐invasive and exploratory power of MDA makes it ideally suited to study the form and function in vertebrates for which no modern analogues exist.
ISSN:0031-0239
1475-4983
DOI:10.1111/pala.12501