Optical characterization of poly-SiOx and poly-SiCx carrier-selective passivating contacts
The optical modelling for optimizing high-efficiency c-Si solar cells endowed with poly-SiOx or poly-SiCx carrier-selective passivating contacts (CSPCs) demands a thorough understanding of their optical properties, especially their absorption coefficient. Due to the mixed phase nature of these CSPCs...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2020-06, Vol.210, p.110507, Article 110507 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The optical modelling for optimizing high-efficiency c-Si solar cells endowed with poly-SiOx or poly-SiCx carrier-selective passivating contacts (CSPCs) demands a thorough understanding of their optical properties, especially their absorption coefficient. Due to the mixed phase nature of these CSPCs, spectroscopic ellipsometry is unable to accurately detect the weak free carrier absorption (FCA) at long wavelengths. In this work, the absorption coefficient of doped poly-SiOx and poly-SiCx layers as function of oxygen and carbon content, respectively, was obtained for wavelengths (300–2000 nm) by means of two alternative techniques. The first approach, photothermal deflection spectroscopy (PDS), was used for layers grown on quartz substrates and is appealing from the point of view of sample fabrication. The second, a novel inverse modelling (IM) approach based on reflectance and transmittance measurements, was instead used for layers grown on textured c-Si wafer substrates to mimic symmetrical samples. Although the absorption coefficients obtained from these two techniques slightly differ due to the different used substrates, we could successfully measure weak FCA in our CSPCs layers. Using an in-house developed multi-optical regime simulator and comparing modelled reflectance and transmittance with measured counterparts from symmetrical samples, we confirmed that with increasing doping concentration FCA increases; and found that the absorption coefficients obtained from IM can now be used to perform optical simulations of these CSPCs in solar cells.
•We use two techniques, PDS and IM to extract absorption coefficients of poly-SiOx and poly-SiCxCSPCs.•Inverse modelling (IM) approach is a novel method based on reflectance and transmittance measurements.•Using GenPro4, the modelled reflectance and transmittance have been compared with measured counterparts.•We also study the effect of changing oxygen, carbon and doping concentrations in our CSPCs. |
---|---|
ISSN: | 0927-0248 1879-3398 |
DOI: | 10.1016/j.solmat.2020.110507 |