On members of Lucas sequences which are products of factorials

We show that if { U n } n ≥ 0 is a Lucas sequence, then the largest n such that | U n | = m 1 ! m 2 ! ⋯ m k ! with 1 ≤ m 1 ≤ m 2 ≤ ⋯ ≤ m k satisfies n <  62,000. When the roots of the Lucas sequence are real, we have n ∈ { 1 , 2 , 3 , 4 , 6 , 12 } . As a consequence, we show that if { X n } n ≥ 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2020-10, Vol.193 (2), p.329-359
Hauptverfasser: Laishram, Shanta, Luca, Florian, Sias, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that if { U n } n ≥ 0 is a Lucas sequence, then the largest n such that | U n | = m 1 ! m 2 ! ⋯ m k ! with 1 ≤ m 1 ≤ m 2 ≤ ⋯ ≤ m k satisfies n <  62,000. When the roots of the Lucas sequence are real, we have n ∈ { 1 , 2 , 3 , 4 , 6 , 12 } . As a consequence, we show that if { X n } n ≥ 1 is the sequence of X -coordinates of a Pell equation X 2 - d Y 2 = ± 1 with a non-zero integer d > 1 , then X n = m ! implies n = 1 .
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-020-01455-y