On members of Lucas sequences which are products of factorials
We show that if { U n } n ≥ 0 is a Lucas sequence, then the largest n such that | U n | = m 1 ! m 2 ! ⋯ m k ! with 1 ≤ m 1 ≤ m 2 ≤ ⋯ ≤ m k satisfies n < 62,000. When the roots of the Lucas sequence are real, we have n ∈ { 1 , 2 , 3 , 4 , 6 , 12 } . As a consequence, we show that if { X n } n ≥ 1...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2020-10, Vol.193 (2), p.329-359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if
{
U
n
}
n
≥
0
is a Lucas sequence, then the largest
n
such that
|
U
n
|
=
m
1
!
m
2
!
⋯
m
k
!
with
1
≤
m
1
≤
m
2
≤
⋯
≤
m
k
satisfies
n
<
62,000. When the roots of the Lucas sequence are real, we have
n
∈
{
1
,
2
,
3
,
4
,
6
,
12
}
. As a consequence, we show that if
{
X
n
}
n
≥
1
is the sequence of
X
-coordinates of a Pell equation
X
2
-
d
Y
2
=
±
1
with a non-zero integer
d
>
1
, then
X
n
=
m
!
implies
n
=
1
. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-020-01455-y |