Lattice-based methods for regression and density estimation on complicated multidimensional regions

This paper illustrates the use of diffusion kernels to estimate smooth density and regression functions defined on highly complex domains. We generalize the two-dimensional lattice-based estimators of Barry and McIntyre ( 2011 ) and McIntyre and Barry ( 2018 ) to estimate any function defined on a d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental and ecological statistics 2020-09, Vol.27 (3), p.571-589
Hauptverfasser: Barry, Ronald P., McIntyre, Julie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper illustrates the use of diffusion kernels to estimate smooth density and regression functions defined on highly complex domains. We generalize the two-dimensional lattice-based estimators of Barry and McIntyre ( 2011 ) and McIntyre and Barry ( 2018 ) to estimate any function defined on a domain that may be embedded in R d , d ≥ 1 . Examples include function estimation on the surface of a sphere, a sphere with boundaries and holes, a sphere over multiple time periods, a linear network, the surface of cylinder, a three-dimensional volume with boundaries, and a union of one- and two-dimensional subregions.
ISSN:1352-8505
1573-3009
DOI:10.1007/s10651-020-00459-z