Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems

In this paper, we are concerned with the existence and concentration of ground state solutions for the following nonlinear Schrödinger–Poisson-type system with doubly critical growth - ε 2 Δ u + V ( x ) u - ϕ | u | 3 u = | u | 4 u + f ( u ) , in R 3 , - ε 2 Δ ϕ = | u | 5 , in R 3 , where ε > 0 is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2020-10, Vol.71 (5), Article 154
1. Verfasser: Feng, Xiaojing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 71
creator Feng, Xiaojing
description In this paper, we are concerned with the existence and concentration of ground state solutions for the following nonlinear Schrödinger–Poisson-type system with doubly critical growth - ε 2 Δ u + V ( x ) u - ϕ | u | 3 u = | u | 4 u + f ( u ) , in R 3 , - ε 2 Δ ϕ = | u | 5 , in R 3 , where ε > 0 is a small parameter. By employing the concentration-compactness principle and mountain pass theorem, we prove the existence of positive ground state solutions v ε with exponential decay at infinity for ε sufficiently small under some suitable assumptions on the potential V and nonlinearity f . Moreover, as ε → 0 + , v ε concentrates around a global minimum point of V .
doi_str_mv 10.1007/s00033-020-01381-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437883852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437883852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d199823189dea0b472bf97b919276c2c0b6ed07e34ecf761d83fa49d25631d5f3</originalsourceid><addsrcrecordid>eNp9UEtKxDAYDqLgOHoBVwHX1T9J2zRLGXzBgIK6DmmSjh06zZikMLPzDt7FC3gTT2LGCu5c_a_vwf8hdErgnADwiwAAjGVAIQPCKpJt9tCE5GkUwMQ-mgDkeUYpLw7RUQjLBOcE2AStrjZtiLbXFqveYO1S10evYut67Bq88G5I-xBVtDi4btgdAm6cx8YNdbfF2rex1arDj_rFf36Ytl9Y__X2_uDaEFyfxe06MbfJZBWO0UGjumBPfusUPV9fPc1us_n9zd3scp5pRkTMDBGiooxUwlgFdc5p3QheCyIoLzXVUJfWALcst7rhJTEVa1QuDC1KRkzRsCk6G3XX3r0ONkS5dIPvk6WkOeNVxaqCJhQdUdq7ELxt5Nq3K-W3koDcxSrHWGWKVf7EKjeJxEZSSODdq3_S_7C-AXPtfyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437883852</pqid></control><display><type>article</type><title>Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Feng, Xiaojing</creator><creatorcontrib>Feng, Xiaojing</creatorcontrib><description>In this paper, we are concerned with the existence and concentration of ground state solutions for the following nonlinear Schrödinger–Poisson-type system with doubly critical growth - ε 2 Δ u + V ( x ) u - ϕ | u | 3 u = | u | 4 u + f ( u ) , in R 3 , - ε 2 Δ ϕ = | u | 5 , in R 3 , where ε &gt; 0 is a small parameter. By employing the concentration-compactness principle and mountain pass theorem, we prove the existence of positive ground state solutions v ε with exponential decay at infinity for ε sufficiently small under some suitable assumptions on the potential V and nonlinearity f . Moreover, as ε → 0 + , v ε concentrates around a global minimum point of V .</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-020-01381-x</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Engineering ; Existence theorems ; Ground state ; Mathematical Methods in Physics ; Mountains ; Nonlinearity ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2020-10, Vol.71 (5), Article 154</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d199823189dea0b472bf97b919276c2c0b6ed07e34ecf761d83fa49d25631d5f3</citedby><cites>FETCH-LOGICAL-c319t-d199823189dea0b472bf97b919276c2c0b6ed07e34ecf761d83fa49d25631d5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-020-01381-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-020-01381-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Feng, Xiaojing</creatorcontrib><title>Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this paper, we are concerned with the existence and concentration of ground state solutions for the following nonlinear Schrödinger–Poisson-type system with doubly critical growth - ε 2 Δ u + V ( x ) u - ϕ | u | 3 u = | u | 4 u + f ( u ) , in R 3 , - ε 2 Δ ϕ = | u | 5 , in R 3 , where ε &gt; 0 is a small parameter. By employing the concentration-compactness principle and mountain pass theorem, we prove the existence of positive ground state solutions v ε with exponential decay at infinity for ε sufficiently small under some suitable assumptions on the potential V and nonlinearity f . Moreover, as ε → 0 + , v ε concentrates around a global minimum point of V .</description><subject>Engineering</subject><subject>Existence theorems</subject><subject>Ground state</subject><subject>Mathematical Methods in Physics</subject><subject>Mountains</subject><subject>Nonlinearity</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UEtKxDAYDqLgOHoBVwHX1T9J2zRLGXzBgIK6DmmSjh06zZikMLPzDt7FC3gTT2LGCu5c_a_vwf8hdErgnADwiwAAjGVAIQPCKpJt9tCE5GkUwMQ-mgDkeUYpLw7RUQjLBOcE2AStrjZtiLbXFqveYO1S10evYut67Bq88G5I-xBVtDi4btgdAm6cx8YNdbfF2rex1arDj_rFf36Ytl9Y__X2_uDaEFyfxe06MbfJZBWO0UGjumBPfusUPV9fPc1us_n9zd3scp5pRkTMDBGiooxUwlgFdc5p3QheCyIoLzXVUJfWALcst7rhJTEVa1QuDC1KRkzRsCk6G3XX3r0ONkS5dIPvk6WkOeNVxaqCJhQdUdq7ELxt5Nq3K-W3koDcxSrHWGWKVf7EKjeJxEZSSODdq3_S_7C-AXPtfyc</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Feng, Xiaojing</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems</title><author>Feng, Xiaojing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d199823189dea0b472bf97b919276c2c0b6ed07e34ecf761d83fa49d25631d5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Engineering</topic><topic>Existence theorems</topic><topic>Ground state</topic><topic>Mathematical Methods in Physics</topic><topic>Mountains</topic><topic>Nonlinearity</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xiaojing</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xiaojing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>71</volume><issue>5</issue><artnum>154</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this paper, we are concerned with the existence and concentration of ground state solutions for the following nonlinear Schrödinger–Poisson-type system with doubly critical growth - ε 2 Δ u + V ( x ) u - ϕ | u | 3 u = | u | 4 u + f ( u ) , in R 3 , - ε 2 Δ ϕ = | u | 5 , in R 3 , where ε &gt; 0 is a small parameter. By employing the concentration-compactness principle and mountain pass theorem, we prove the existence of positive ground state solutions v ε with exponential decay at infinity for ε sufficiently small under some suitable assumptions on the potential V and nonlinearity f . Moreover, as ε → 0 + , v ε concentrates around a global minimum point of V .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-020-01381-x</doi></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2020-10, Vol.71 (5), Article 154
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2437883852
source SpringerLink Journals - AutoHoldings
subjects Engineering
Existence theorems
Ground state
Mathematical Methods in Physics
Mountains
Nonlinearity
Theoretical and Applied Mechanics
title Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20concentration%20of%20ground%20state%20solutions%20for%20doubly%20critical%20Schr%C3%B6dinger%E2%80%93Poisson-type%20systems&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Feng,%20Xiaojing&rft.date=2020-10-01&rft.volume=71&rft.issue=5&rft.artnum=154&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-020-01381-x&rft_dat=%3Cproquest_cross%3E2437883852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437883852&rft_id=info:pmid/&rfr_iscdi=true