Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems
In this paper, we are concerned with the existence and concentration of ground state solutions for the following nonlinear Schrödinger–Poisson-type system with doubly critical growth - ε 2 Δ u + V ( x ) u - ϕ | u | 3 u = | u | 4 u + f ( u ) , in R 3 , - ε 2 Δ ϕ = | u | 5 , in R 3 , where ε > 0 is...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2020-10, Vol.71 (5), Article 154 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we are concerned with the existence and concentration of ground state solutions for the following nonlinear Schrödinger–Poisson-type system with doubly critical growth
-
ε
2
Δ
u
+
V
(
x
)
u
-
ϕ
|
u
|
3
u
=
|
u
|
4
u
+
f
(
u
)
,
in
R
3
,
-
ε
2
Δ
ϕ
=
|
u
|
5
,
in
R
3
,
where
ε
>
0
is a small parameter. By employing the concentration-compactness principle and mountain pass theorem, we prove the existence of positive ground state solutions
v
ε
with exponential decay at infinity for
ε
sufficiently small under some suitable assumptions on the potential
V
and nonlinearity
f
. Moreover, as
ε
→
0
+
,
v
ε
concentrates around a global minimum point of
V
. |
---|---|
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-020-01381-x |