Existence and concentration of ground state solutions for doubly critical Schrödinger–Poisson-type systems

In this paper, we are concerned with the existence and concentration of ground state solutions for the following nonlinear Schrödinger–Poisson-type system with doubly critical growth - ε 2 Δ u + V ( x ) u - ϕ | u | 3 u = | u | 4 u + f ( u ) , in R 3 , - ε 2 Δ ϕ = | u | 5 , in R 3 , where ε > 0 is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2020-10, Vol.71 (5), Article 154
1. Verfasser: Feng, Xiaojing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we are concerned with the existence and concentration of ground state solutions for the following nonlinear Schrödinger–Poisson-type system with doubly critical growth - ε 2 Δ u + V ( x ) u - ϕ | u | 3 u = | u | 4 u + f ( u ) , in R 3 , - ε 2 Δ ϕ = | u | 5 , in R 3 , where ε > 0 is a small parameter. By employing the concentration-compactness principle and mountain pass theorem, we prove the existence of positive ground state solutions v ε with exponential decay at infinity for ε sufficiently small under some suitable assumptions on the potential V and nonlinearity f . Moreover, as ε → 0 + , v ε concentrates around a global minimum point of V .
ISSN:0044-2275
1420-9039
DOI:10.1007/s00033-020-01381-x