Sobolev Mappings and Moduli Inequalities on Carnot Groups
. We study the mappings that satisfy moduli inequalities on Carnot groups. We prove that the homeomorphisms satisfying the moduli inequalities ( Q -homeomorphisms) with a locally integrable function Q are Sobolev mappings. On this base in the frameworks of the weak inverse mapping theorem, we prove...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.249 (5), p.754-768 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | . We study the mappings that satisfy moduli inequalities on Carnot groups. We prove that the homeomorphisms satisfying the moduli inequalities (
Q
-homeomorphisms) with a locally integrable function
Q
are Sobolev mappings. On this base in the frameworks of the weak inverse mapping theorem, we prove that, on the Carnot groups G
;
the mappings inverse to Sobolev homeomorphisms of finite distortion of the class
W
v
,
loc
1
Ω
Ω
′
belong to the Sobolev class
W
1
,
loc
1
Ω
′
Ω
. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-020-04971-2 |