Sobolev Mappings and Moduli Inequalities on Carnot Groups

. We study the mappings that satisfy moduli inequalities on Carnot groups. We prove that the homeomorphisms satisfying the moduli inequalities ( Q -homeomorphisms) with a locally integrable function Q are Sobolev mappings. On this base in the frameworks of the weak inverse mapping theorem, we prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.249 (5), p.754-768
Hauptverfasser: Sevost’yanov, Evgenii A., Ukhlov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:. We study the mappings that satisfy moduli inequalities on Carnot groups. We prove that the homeomorphisms satisfying the moduli inequalities ( Q -homeomorphisms) with a locally integrable function Q are Sobolev mappings. On this base in the frameworks of the weak inverse mapping theorem, we prove that, on the Carnot groups G ; the mappings inverse to Sobolev homeomorphisms of finite distortion of the class W v , loc 1 Ω Ω ′ belong to the Sobolev class W 1 , loc 1 Ω ′ Ω .
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-04971-2