Efficient growth and characterization of one-dimensional transition metal tellurides inside carbon nanotubes

Atomically thin one-dimensional (1D) van der Waals wires of transition metal monochalocogenides (TMMs) have been anticipated as promising building blocks for integrated nanoelectronics. While reliable production of TMM nanowires has eluded scientists over the past few decades, we finally demonstrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2020-09, Vol.12 (33), p.17185-1719
Hauptverfasser: Kanda, Naoyuki, Nakanishi, Yusuke, Liu, Dan, Liu, Zheng, Inoue, Tsukasa, Miyata, Yasumitsu, Tománek, David, Shinohara, Hisanori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Atomically thin one-dimensional (1D) van der Waals wires of transition metal monochalocogenides (TMMs) have been anticipated as promising building blocks for integrated nanoelectronics. While reliable production of TMM nanowires has eluded scientists over the past few decades, we finally demonstrated a bottom-up fabrication of MoTe nanowires inside carbon nanotubes (CNTs). Still, the current synthesis method is based on vacuum annealing of reactive MoTe 2 , and limits access to a variety of TMMs. Here we report an expanded framework for high-yield synthesis of the 1D tellurides including WTe, an previously unknown family of TMMs. Experimental and theoretical analyses revealed that the choice of suitable metal oxides as a precursor provides a useful yield for their characterization. These TMM nanowires exhibit a significant optical absorption in the visible-light region. More important, electronic properties of CNTs can be tuned by encapsulating different TMM nanowires. Confinement of van der Waals materials inside 1D carbon nanotubes leads to properties not observed in the bulk.
ISSN:2040-3364
2040-3372
DOI:10.1039/d0nr03129a