Chemical Treatment of a Highly Expansive Clay Using a Liquid Ionic Soil Stabilizer
Expansive soils for residential projects are often treated with liquid ionic soil stabilizer (LISS) using deep pressurized injection method. Liquid ionic soil stabilizers have a long history of application in practice. However, there is limited knowledge and experimental evidence of their stabilizat...
Gespeichert in:
Veröffentlicht in: | Geotechnical and geological engineering 2020-10, Vol.38 (5), p.4981-4993 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Expansive soils for residential projects are often treated with liquid ionic soil stabilizer (LISS) using deep pressurized injection method. Liquid ionic soil stabilizers have a long history of application in practice. However, there is limited knowledge and experimental evidence of their stabilization mechanism and effectiveness. This paper summarizes the research that investigated the effects of liquid ionic stabilizers on key engineering properties of a highly expansive clay from Carrollton, Texas, through comprehensive physical and mechanical testing and microscopic observation of untreated and treated soils. Test results before and after treatment were analyzed for two different treatment ratios: 1:300 and 1:150, showing a 53% swell reduction for treated soil compacted at the optimum moisture content (OMC) for treated soil, and 25% swell reduction for treated soil compacted at the OMC for the untreated soil. There was no significant improvement in unconfined compressive strength; noticeable improvement in stiffness was observed. The microscopic analysis showed a marked change in morphology and quantitative element composition, thus suggesting the occurrence of a reasonable degree of stabilization. |
---|---|
ISSN: | 0960-3182 1573-1529 |
DOI: | 10.1007/s10706-020-01342-1 |