Goodness-of-fit test for a parametric survival function with cure fraction

We consider the survival function for univariate right-censored event time data, when a cure fraction is present. This means that the population consists of two parts: the cured or non-susceptible group, who will never experience the event of interest versus the non-cured or susceptible group, who w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Test (Madrid, Spain) Spain), 2020-09, Vol.29 (3), p.768-792
Hauptverfasser: Geerdens, Candida, Janssen, Paul, Van Keilegom, Ingrid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the survival function for univariate right-censored event time data, when a cure fraction is present. This means that the population consists of two parts: the cured or non-susceptible group, who will never experience the event of interest versus the non-cured or susceptible group, who will undergo the event of interest when followed up sufficiently long. When modeling the data, a parametric form is often imposed on the survival function of the susceptible group. In this paper, we construct a simple novel test to verify the aptness of the assumed parametric form. To this end, we contrast the parametric fit with the nonparametric fit based on a rescaled Kaplan–Meier estimator. The asymptotic distribution of the two estimators and of the test statistic are established. The latter depends on unknown parameters, hence a bootstrap procedure is applied to approximate the critical values of the test. An extensive simulation study reveals the good finite sample performance of the developed test. To illustrate the practical use, the test is also applied on two real-life data sets.
ISSN:1133-0686
1863-8260
DOI:10.1007/s11749-019-00680-4