Pyramid Ricci flow in higher dimensions
In this paper, we construct a pyramid Ricci flow starting with a complete Riemannian manifold ( M n , g 0 ) that is PIC1, or more generally satisfies a lower curvature bound K IC 1 ≥ - α 0 . That is, instead of constructing a flow on M × [ 0 , T ] , we construct it on a subset of space-time that is...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2020-10, Vol.296 (1-2), p.511-523 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 523 |
---|---|
container_issue | 1-2 |
container_start_page | 511 |
container_title | Mathematische Zeitschrift |
container_volume | 296 |
creator | McLeod, Andrew D. Topping, Peter M. |
description | In this paper, we construct a pyramid Ricci flow starting with a complete Riemannian manifold
(
M
n
,
g
0
)
that is PIC1, or more generally satisfies a lower curvature bound
K
IC
1
≥
-
α
0
. That is, instead of constructing a flow on
M
×
[
0
,
T
]
, we construct it on a subset of space-time that is a union of parabolic cylinders
B
g
0
(
x
0
,
k
)
×
[
0
,
T
k
]
for each
k
∈
N
, where
T
k
↓
0
, and prove estimates on the curvature and Riemannian distance. More generally, we construct a pyramid Ricci flow starting with any noncollapsed
IC
1
-limit space, and use it to establish that such limit spaces are globally homeomorphic to smooth manifolds via homeomorphisms that are locally bi-Hölder. |
doi_str_mv | 10.1007/s00209-020-02472-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437414670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437414670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5d0beba97ba44a99b1beaeda3514a4ea9f162ccc73899ecd815f974d7193bfe13</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaJgXf0DngoePEUzSdo0R1n8ggVF9BySNNnNsm3XZBfZf29qBW8e5s3Ae_NmeAhdArkBQsRtIoQSiTPk4oJiOEIFcJaHhrJjVGS-wlUj-Ck6S2lNSCYFL9D16yHqLrTlW7A2lH4zfJWhL1dhuXKxbEPn-hSGPp2jE683yV389hn6eLh_nz_hxcvj8_xugS2r2Q5XLTHOaCmM5lxLacA47VrNKuCaOy091NRaK1gjpbNtA5WXgrcCJDPeAZuhq8l3G4fPvUs7tR72sc8nFR0_Bl4LklV0Utk4pBSdV9sYOh0PCogaA1FTICqD-glEjdZsWkpZ3C9d_LP-Z-sbEVhiUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437414670</pqid></control><display><type>article</type><title>Pyramid Ricci flow in higher dimensions</title><source>Springer Nature - Complete Springer Journals</source><creator>McLeod, Andrew D. ; Topping, Peter M.</creator><creatorcontrib>McLeod, Andrew D. ; Topping, Peter M.</creatorcontrib><description>In this paper, we construct a pyramid Ricci flow starting with a complete Riemannian manifold
(
M
n
,
g
0
)
that is PIC1, or more generally satisfies a lower curvature bound
K
IC
1
≥
-
α
0
. That is, instead of constructing a flow on
M
×
[
0
,
T
]
, we construct it on a subset of space-time that is a union of parabolic cylinders
B
g
0
(
x
0
,
k
)
×
[
0
,
T
k
]
for each
k
∈
N
, where
T
k
↓
0
, and prove estimates on the curvature and Riemannian distance. More generally, we construct a pyramid Ricci flow starting with any noncollapsed
IC
1
-limit space, and use it to establish that such limit spaces are globally homeomorphic to smooth manifolds via homeomorphisms that are locally bi-Hölder.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-020-02472-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Curvature ; Mathematics ; Mathematics and Statistics ; Riemann manifold</subject><ispartof>Mathematische Zeitschrift, 2020-10, Vol.296 (1-2), p.511-523</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5d0beba97ba44a99b1beaeda3514a4ea9f162ccc73899ecd815f974d7193bfe13</citedby><cites>FETCH-LOGICAL-c363t-5d0beba97ba44a99b1beaeda3514a4ea9f162ccc73899ecd815f974d7193bfe13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-020-02472-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-020-02472-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>McLeod, Andrew D.</creatorcontrib><creatorcontrib>Topping, Peter M.</creatorcontrib><title>Pyramid Ricci flow in higher dimensions</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>In this paper, we construct a pyramid Ricci flow starting with a complete Riemannian manifold
(
M
n
,
g
0
)
that is PIC1, or more generally satisfies a lower curvature bound
K
IC
1
≥
-
α
0
. That is, instead of constructing a flow on
M
×
[
0
,
T
]
, we construct it on a subset of space-time that is a union of parabolic cylinders
B
g
0
(
x
0
,
k
)
×
[
0
,
T
k
]
for each
k
∈
N
, where
T
k
↓
0
, and prove estimates on the curvature and Riemannian distance. More generally, we construct a pyramid Ricci flow starting with any noncollapsed
IC
1
-limit space, and use it to establish that such limit spaces are globally homeomorphic to smooth manifolds via homeomorphisms that are locally bi-Hölder.</description><subject>Curvature</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LxDAQDaJgXf0DngoePEUzSdo0R1n8ggVF9BySNNnNsm3XZBfZf29qBW8e5s3Ae_NmeAhdArkBQsRtIoQSiTPk4oJiOEIFcJaHhrJjVGS-wlUj-Ck6S2lNSCYFL9D16yHqLrTlW7A2lH4zfJWhL1dhuXKxbEPn-hSGPp2jE683yV389hn6eLh_nz_hxcvj8_xugS2r2Q5XLTHOaCmM5lxLacA47VrNKuCaOy091NRaK1gjpbNtA5WXgrcCJDPeAZuhq8l3G4fPvUs7tR72sc8nFR0_Bl4LklV0Utk4pBSdV9sYOh0PCogaA1FTICqD-glEjdZsWkpZ3C9d_LP-Z-sbEVhiUA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>McLeod, Andrew D.</creator><creator>Topping, Peter M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Pyramid Ricci flow in higher dimensions</title><author>McLeod, Andrew D. ; Topping, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5d0beba97ba44a99b1beaeda3514a4ea9f162ccc73899ecd815f974d7193bfe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Curvature</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McLeod, Andrew D.</creatorcontrib><creatorcontrib>Topping, Peter M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McLeod, Andrew D.</au><au>Topping, Peter M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pyramid Ricci flow in higher dimensions</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>296</volume><issue>1-2</issue><spage>511</spage><epage>523</epage><pages>511-523</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>In this paper, we construct a pyramid Ricci flow starting with a complete Riemannian manifold
(
M
n
,
g
0
)
that is PIC1, or more generally satisfies a lower curvature bound
K
IC
1
≥
-
α
0
. That is, instead of constructing a flow on
M
×
[
0
,
T
]
, we construct it on a subset of space-time that is a union of parabolic cylinders
B
g
0
(
x
0
,
k
)
×
[
0
,
T
k
]
for each
k
∈
N
, where
T
k
↓
0
, and prove estimates on the curvature and Riemannian distance. More generally, we construct a pyramid Ricci flow starting with any noncollapsed
IC
1
-limit space, and use it to establish that such limit spaces are globally homeomorphic to smooth manifolds via homeomorphisms that are locally bi-Hölder.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-020-02472-1</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2020-10, Vol.296 (1-2), p.511-523 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_2437414670 |
source | Springer Nature - Complete Springer Journals |
subjects | Curvature Mathematics Mathematics and Statistics Riemann manifold |
title | Pyramid Ricci flow in higher dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A16%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pyramid%20Ricci%20flow%20in%20higher%20dimensions&rft.jtitle=Mathematische%20Zeitschrift&rft.au=McLeod,%20Andrew%20D.&rft.date=2020-10-01&rft.volume=296&rft.issue=1-2&rft.spage=511&rft.epage=523&rft.pages=511-523&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-020-02472-1&rft_dat=%3Cproquest_cross%3E2437414670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437414670&rft_id=info:pmid/&rfr_iscdi=true |