Pyramid Ricci flow in higher dimensions
In this paper, we construct a pyramid Ricci flow starting with a complete Riemannian manifold ( M n , g 0 ) that is PIC1, or more generally satisfies a lower curvature bound K IC 1 ≥ - α 0 . That is, instead of constructing a flow on M × [ 0 , T ] , we construct it on a subset of space-time that is...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2020-10, Vol.296 (1-2), p.511-523 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we construct a pyramid Ricci flow starting with a complete Riemannian manifold
(
M
n
,
g
0
)
that is PIC1, or more generally satisfies a lower curvature bound
K
IC
1
≥
-
α
0
. That is, instead of constructing a flow on
M
×
[
0
,
T
]
, we construct it on a subset of space-time that is a union of parabolic cylinders
B
g
0
(
x
0
,
k
)
×
[
0
,
T
k
]
for each
k
∈
N
, where
T
k
↓
0
, and prove estimates on the curvature and Riemannian distance. More generally, we construct a pyramid Ricci flow starting with any noncollapsed
IC
1
-limit space, and use it to establish that such limit spaces are globally homeomorphic to smooth manifolds via homeomorphisms that are locally bi-Hölder. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-020-02472-1 |