Pyramid Ricci flow in higher dimensions

In this paper, we construct a pyramid Ricci flow starting with a complete Riemannian manifold ( M n , g 0 ) that is PIC1, or more generally satisfies a lower curvature bound K IC 1 ≥ - α 0 . That is, instead of constructing a flow on M × [ 0 , T ] , we construct it on a subset of space-time that is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2020-10, Vol.296 (1-2), p.511-523
Hauptverfasser: McLeod, Andrew D., Topping, Peter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we construct a pyramid Ricci flow starting with a complete Riemannian manifold ( M n , g 0 ) that is PIC1, or more generally satisfies a lower curvature bound K IC 1 ≥ - α 0 . That is, instead of constructing a flow on M × [ 0 , T ] , we construct it on a subset of space-time that is a union of parabolic cylinders B g 0 ( x 0 , k ) × [ 0 , T k ] for each k ∈ N , where T k ↓ 0 , and prove estimates on the curvature and Riemannian distance. More generally, we construct a pyramid Ricci flow starting with any noncollapsed IC 1 -limit space, and use it to establish that such limit spaces are globally homeomorphic to smooth manifolds via homeomorphisms that are locally bi-Hölder.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-020-02472-1