Zhong–Yang type eigenvalue estimate with integral curvature condition

We prove a sharp Zhong–Yang type eigenvalue lower bound for closed Riemannian manifolds with control on integral Ricci curvature.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2020-10, Vol.296 (1-2), p.595-613
Hauptverfasser: Ramos Olivé, Xavier, Seto, Shoo, Wei, Guofang, Zhang, Qi S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 1-2
container_start_page 595
container_title Mathematische Zeitschrift
container_volume 296
creator Ramos Olivé, Xavier
Seto, Shoo
Wei, Guofang
Zhang, Qi S.
description We prove a sharp Zhong–Yang type eigenvalue lower bound for closed Riemannian manifolds with control on integral Ricci curvature.
doi_str_mv 10.1007/s00209-019-02448-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2437414598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437414598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a6af6072f2d9617e686c42f4aa36688bc1a90be28f8d6b1c35e769a74f8d59c3</originalsourceid><addsrcrecordid>eNp9ULtOAzEQtBBIhMAPUJ1EbfDr_ChRBAlSJJo00FiO47tcFHzB9uWUjn_gD_kSHA6JjmK1u9qZ2d0B4BqjW4yQuIsIEaQgwjkIYxL2J2CEGSUQS0JPwSjPS1hKwc7BRYwbhPJQsBGYvq5bX399fL4YXxfpsHOFa2rn92bb5TKm5s0kV_RNWheNT64OZlvYLuxN6oIrbOtXTWpafwnOKrON7uo3j8Hi8WExmcH58_Rpcj-HlmKVoOGm4kiQiqwUx8JxyS0jFTOGci7l0mKj0NIRWckVX2JLSye4MoLlvlSWjsHNILsL7XuXz9Obtgs-b9Tk-BBmpZIZRQaUDW2MwVV6F_If4aAx0ke_9OCXzn7pH790n0l0IMUM9rULf9L_sL4Ba-1v9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437414598</pqid></control><display><type>article</type><title>Zhong–Yang type eigenvalue estimate with integral curvature condition</title><source>Springer Nature - Complete Springer Journals</source><creator>Ramos Olivé, Xavier ; Seto, Shoo ; Wei, Guofang ; Zhang, Qi S.</creator><creatorcontrib>Ramos Olivé, Xavier ; Seto, Shoo ; Wei, Guofang ; Zhang, Qi S.</creatorcontrib><description>We prove a sharp Zhong–Yang type eigenvalue lower bound for closed Riemannian manifolds with control on integral Ricci curvature.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-019-02448-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Curvature ; Eigenvalues ; Integrals ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Riemann manifold</subject><ispartof>Mathematische Zeitschrift, 2020-10, Vol.296 (1-2), p.595-613</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a6af6072f2d9617e686c42f4aa36688bc1a90be28f8d6b1c35e769a74f8d59c3</citedby><cites>FETCH-LOGICAL-c319t-a6af6072f2d9617e686c42f4aa36688bc1a90be28f8d6b1c35e769a74f8d59c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-019-02448-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-019-02448-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ramos Olivé, Xavier</creatorcontrib><creatorcontrib>Seto, Shoo</creatorcontrib><creatorcontrib>Wei, Guofang</creatorcontrib><creatorcontrib>Zhang, Qi S.</creatorcontrib><title>Zhong–Yang type eigenvalue estimate with integral curvature condition</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We prove a sharp Zhong–Yang type eigenvalue lower bound for closed Riemannian manifolds with control on integral Ricci curvature.</description><subject>Curvature</subject><subject>Eigenvalues</subject><subject>Integrals</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Riemann manifold</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOAzEQtBBIhMAPUJ1EbfDr_ChRBAlSJJo00FiO47tcFHzB9uWUjn_gD_kSHA6JjmK1u9qZ2d0B4BqjW4yQuIsIEaQgwjkIYxL2J2CEGSUQS0JPwSjPS1hKwc7BRYwbhPJQsBGYvq5bX399fL4YXxfpsHOFa2rn92bb5TKm5s0kV_RNWheNT64OZlvYLuxN6oIrbOtXTWpafwnOKrON7uo3j8Hi8WExmcH58_Rpcj-HlmKVoOGm4kiQiqwUx8JxyS0jFTOGci7l0mKj0NIRWckVX2JLSye4MoLlvlSWjsHNILsL7XuXz9Obtgs-b9Tk-BBmpZIZRQaUDW2MwVV6F_If4aAx0ke_9OCXzn7pH790n0l0IMUM9rULf9L_sL4Ba-1v9Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Ramos Olivé, Xavier</creator><creator>Seto, Shoo</creator><creator>Wei, Guofang</creator><creator>Zhang, Qi S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201001</creationdate><title>Zhong–Yang type eigenvalue estimate with integral curvature condition</title><author>Ramos Olivé, Xavier ; Seto, Shoo ; Wei, Guofang ; Zhang, Qi S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a6af6072f2d9617e686c42f4aa36688bc1a90be28f8d6b1c35e769a74f8d59c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Curvature</topic><topic>Eigenvalues</topic><topic>Integrals</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Riemann manifold</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos Olivé, Xavier</creatorcontrib><creatorcontrib>Seto, Shoo</creatorcontrib><creatorcontrib>Wei, Guofang</creatorcontrib><creatorcontrib>Zhang, Qi S.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos Olivé, Xavier</au><au>Seto, Shoo</au><au>Wei, Guofang</au><au>Zhang, Qi S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zhong–Yang type eigenvalue estimate with integral curvature condition</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>296</volume><issue>1-2</issue><spage>595</spage><epage>613</epage><pages>595-613</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We prove a sharp Zhong–Yang type eigenvalue lower bound for closed Riemannian manifolds with control on integral Ricci curvature.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-019-02448-w</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2020-10, Vol.296 (1-2), p.595-613
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2437414598
source Springer Nature - Complete Springer Journals
subjects Curvature
Eigenvalues
Integrals
Lower bounds
Mathematics
Mathematics and Statistics
Riemann manifold
title Zhong–Yang type eigenvalue estimate with integral curvature condition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zhong%E2%80%93Yang%20type%20eigenvalue%20estimate%20with%20integral%20curvature%20condition&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Ramos%20Oliv%C3%A9,%20Xavier&rft.date=2020-10-01&rft.volume=296&rft.issue=1-2&rft.spage=595&rft.epage=613&rft.pages=595-613&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-019-02448-w&rft_dat=%3Cproquest_cross%3E2437414598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437414598&rft_id=info:pmid/&rfr_iscdi=true