The spectrum of the Laplacian on forms over flat manifolds
In this article we prove that the spectrum of the Laplacian on k -forms over a non compact flat manifold is always a connected closed interval of the non negative real line. The proof is based on a detailed decomposition of the structure of flat manifolds.
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2020-10, Vol.296 (1-2), p.1-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article we prove that the spectrum of the Laplacian on
k
-forms over a non compact flat manifold is always a connected closed interval of the non negative real line. The proof is based on a detailed decomposition of the structure of flat manifolds. |
---|---|
ISSN: | 0025-5874 1432-1823 |
DOI: | 10.1007/s00209-019-02407-5 |