The spectrum of the Laplacian on forms over flat manifolds

In this article we prove that the spectrum of the Laplacian on k -forms over a non compact flat manifold is always a connected closed interval of the non negative real line. The proof is based on a detailed decomposition of the structure of flat manifolds.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2020-10, Vol.296 (1-2), p.1-12
Hauptverfasser: Charalambous, Nelia, Lu, Zhiqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we prove that the spectrum of the Laplacian on k -forms over a non compact flat manifold is always a connected closed interval of the non negative real line. The proof is based on a detailed decomposition of the structure of flat manifolds.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-019-02407-5