Assessment of steel fiber corrosion in self-healed ultra-high-performance fiber-reinforced concrete and its effect on tensile performance
This study evaluated steel fiber corrosion and tensile behaviors of plain and self-healed ultra-high-performance fiber-reinforced concrete (UHPFRC) exposed to 3.5% sodium chloride (NaCl) solution. The degree of steel fiber corrosion was quantitatively evaluated via energy dispersive X-ray spectrosco...
Gespeichert in:
Veröffentlicht in: | Cement and concrete research 2020-07, Vol.133, p.106091, Article 106091 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study evaluated steel fiber corrosion and tensile behaviors of plain and self-healed ultra-high-performance fiber-reinforced concrete (UHPFRC) exposed to 3.5% sodium chloride (NaCl) solution. The degree of steel fiber corrosion was quantitatively evaluated via energy dispersive X-ray spectroscopy (EDS) and atomic force microscopy (AFM) image analyses. Test results indicate that, even after a 20-week immersion in the NaCl solution, only few steel fibers located near the surface of the non-cracked UHPFRC samples were slightly corroded, and they insignificantly affected the tensile behavior. A slightly better tensile performance was achieved by self-healing process, and it was further improved after exposure to the NaCl solution for a longer duration due to the moderately corroded steel fibers through the partially self-healed cracks. The surface roughness of the pulled-out steel fibers from the composites increased due to the self-healing and corrosion processes, relevant to the enhanced tensile performance, and by increasing the immersion duration. |
---|---|
ISSN: | 0008-8846 1873-3948 |
DOI: | 10.1016/j.cemconres.2020.106091 |