Small-Time Asymptotics for Subelliptic Hermite Functions on SU(2) and the CR Sphere
We show that, under a natural scaling, the small-time behavior of the logarithmic derivatives of the subelliptic heat kernel on S U (2) converges to their analogues on the Heisenberg group at time 1. Realizing S U (2) as S 3 , we then generalize these results to higher-order odd-dimensional spheres...
Gespeichert in:
Veröffentlicht in: | Potential analysis 2020-10, Vol.53 (3), p.1063-1095 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that, under a natural scaling, the small-time behavior of the logarithmic derivatives of the subelliptic heat kernel on
S
U
(2) converges to their analogues on the Heisenberg group at time 1. Realizing
S
U
(2) as
S
3
, we then generalize these results to higher-order odd-dimensional spheres equipped with their natural subRiemannian structure, where the limiting spaces are now the higher-dimensional Heisenberg groups. |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-019-09798-4 |