Use of multivariate statistical methods to analyze the monitoring of surface water quality in the Doce River basin, Minas Gerais, Brazil

The objective of the present study was to evaluate the water quality data in the Minas Gerais portion of the Doce River basin in order to analyze the current monitoring network by identifying the main variables to be maintained in the network, their possible sources of pollution, and the best sampli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2020-10, Vol.27 (28), p.35303-35318
Hauptverfasser: Fraga, Micael de Souza, Reis, Guilherme Barbosa, da Silva, Demetrius David, Guedes, Hugo Alexandre Soares, Elesbon, Abrahão Alexandre Alden
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of the present study was to evaluate the water quality data in the Minas Gerais portion of the Doce River basin in order to analyze the current monitoring network by identifying the main variables to be maintained in the network, their possible sources of pollution, and the best sampling frequency. Multivariate statistical techniques (factor analysis/principal components analysis, FA/PCA and cluster analysis, CA) complemented by the analysis of violation of the framing classes were used for this purpose. Water quality variables common to 64 monitoring sites were analyzed for the base period from 2010 to 2017. The water quality variables were analyzed considering the different monitoring campaigns: (a) partial campaigns; (b) total campaigns; and (c) monthly campaigns. It was identified from the FA/PCA results, that, when the partial campaign data were analyzed, the variables selected represent the high susceptibility that the basin presents to erosion and the release of domestic effluents in its water bodies. When the data of total campaigns were evaluated, representative variables of the contamination by heavy metals from industrial and mining activities were included. Therefore, the analysis of violation of the framing classes made possible to identify five critical variables: thermotolerant coliforms, dissolved iron, total phosphorus, and total manganese, which reinforced the results obtained in FA/PCA. Based on the results of the analyses, it was recommended to include variables associated with heavy metal contamination in the partial campaigns, prioritizing the dissolved iron and total manganese, as well as total chloride sampling only for the total campaigns. The evaluated data from the monthly campaigns, the CA showed that although the quarterly monitoring frequency is satisfactory, the monthly monitoring is more appropriate for the monitoring of water quality in the Minas Gerais portion of the Doce River basin.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-09783-0