Quantum locally linear embedding for nonlinear dimensionality reduction
Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two imple...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2020, Vol.19 (9), Article 309 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Quantum information processing |
container_volume | 19 |
creator | He, Xi Sun, Li Lyu, Chufan Wang, Xiaoting |
description | Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two implementations of the quantum locally linear embedding (QLLE) algorithm to perform the nonlinear dimensionality reduction on quantum devices. One implementation, the linear-algebra-based QLLE algorithm, utilizes quantum linear algebra subroutines to reduce the dimension of the given data. The other implementation, the variational quantum locally linear embedding (VQLLE) algorithm, utilizes a variational hybrid quantum-classical procedure to acquire the low-dimensional data. The classical LLE algorithm requires polynomial time complexity of
N
, where
N
is the global number of the original high-dimensional data. Compared with the classical LLE, the linear-algebra-based QLLE achieves quadratic speedup in the number and dimension of the given data. The VQLLE can be implemented on the near-term quantum devices in two different designs. In addition, the numerical experiments are presented to demonstrate that the two implementations in our work can achieve the procedure of locally linear embedding. |
doi_str_mv | 10.1007/s11128-020-02818-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436893615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436893615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9d97a8aaa64e8202d3094e68c47d465127d4f480671b7bbd24d8531720cb4b3b3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPBU8V_OSNEmPsugqLIig55A06dKlTdakPfTfG7eCNw-PeR8zw2MQugV8DxiLhwQARJaY4FwSZDmfoRVUgpZAKTk_9fkkquoSXaV0wJgAl3yFtu-T9uM0FH1odN_PRd95p2PhBuOs7fy-aEMsfPC_e9sNzqcueN1341xEZ6dmzOM1umh1n9zNL67R5_PTx-al3L1tXzePu7KhUI9lbWuhpdaaMycJJpbimjkuGyYs4xWQDC2TmAswwhhLmJUVBUFwY5ihhq7R3eJ7jOFrcmlUhzDF_E1ShFEua8qhyiyysJoYUoquVcfYDTrOCrD6CUwtgakcmDoFpuYsoosoZbLfu_hn_Y_qG1axbqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436893615</pqid></control><display><type>article</type><title>Quantum locally linear embedding for nonlinear dimensionality reduction</title><source>SpringerLink Journals - AutoHoldings</source><creator>He, Xi ; Sun, Li ; Lyu, Chufan ; Wang, Xiaoting</creator><creatorcontrib>He, Xi ; Sun, Li ; Lyu, Chufan ; Wang, Xiaoting</creatorcontrib><description>Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two implementations of the quantum locally linear embedding (QLLE) algorithm to perform the nonlinear dimensionality reduction on quantum devices. One implementation, the linear-algebra-based QLLE algorithm, utilizes quantum linear algebra subroutines to reduce the dimension of the given data. The other implementation, the variational quantum locally linear embedding (VQLLE) algorithm, utilizes a variational hybrid quantum-classical procedure to acquire the low-dimensional data. The classical LLE algorithm requires polynomial time complexity of
N
, where
N
is the global number of the original high-dimensional data. Compared with the classical LLE, the linear-algebra-based QLLE achieves quadratic speedup in the number and dimension of the given data. The VQLLE can be implemented on the near-term quantum devices in two different designs. In addition, the numerical experiments are presented to demonstrate that the two implementations in our work can achieve the procedure of locally linear embedding.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02818-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Data processing ; Data Structures and Information Theory ; Embedding ; Linear algebra ; Mathematical analysis ; Mathematical Physics ; Physics ; Physics and Astronomy ; Polynomials ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Reduction ; Spintronics ; Subroutines</subject><ispartof>Quantum information processing, 2020, Vol.19 (9), Article 309</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9d97a8aaa64e8202d3094e68c47d465127d4f480671b7bbd24d8531720cb4b3b3</citedby><cites>FETCH-LOGICAL-c319t-9d97a8aaa64e8202d3094e68c47d465127d4f480671b7bbd24d8531720cb4b3b3</cites><orcidid>0000-0003-2676-9742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-020-02818-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-020-02818-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Lyu, Chufan</creatorcontrib><creatorcontrib>Wang, Xiaoting</creatorcontrib><title>Quantum locally linear embedding for nonlinear dimensionality reduction</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two implementations of the quantum locally linear embedding (QLLE) algorithm to perform the nonlinear dimensionality reduction on quantum devices. One implementation, the linear-algebra-based QLLE algorithm, utilizes quantum linear algebra subroutines to reduce the dimension of the given data. The other implementation, the variational quantum locally linear embedding (VQLLE) algorithm, utilizes a variational hybrid quantum-classical procedure to acquire the low-dimensional data. The classical LLE algorithm requires polynomial time complexity of
N
, where
N
is the global number of the original high-dimensional data. Compared with the classical LLE, the linear-algebra-based QLLE achieves quadratic speedup in the number and dimension of the given data. The VQLLE can be implemented on the near-term quantum devices in two different designs. In addition, the numerical experiments are presented to demonstrate that the two implementations in our work can achieve the procedure of locally linear embedding.</description><subject>Algorithms</subject><subject>Data processing</subject><subject>Data Structures and Information Theory</subject><subject>Embedding</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Reduction</subject><subject>Spintronics</subject><subject>Subroutines</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPBU8V_OSNEmPsugqLIig55A06dKlTdakPfTfG7eCNw-PeR8zw2MQugV8DxiLhwQARJaY4FwSZDmfoRVUgpZAKTk_9fkkquoSXaV0wJgAl3yFtu-T9uM0FH1odN_PRd95p2PhBuOs7fy-aEMsfPC_e9sNzqcueN1341xEZ6dmzOM1umh1n9zNL67R5_PTx-al3L1tXzePu7KhUI9lbWuhpdaaMycJJpbimjkuGyYs4xWQDC2TmAswwhhLmJUVBUFwY5ihhq7R3eJ7jOFrcmlUhzDF_E1ShFEua8qhyiyysJoYUoquVcfYDTrOCrD6CUwtgakcmDoFpuYsoosoZbLfu_hn_Y_qG1axbqc</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>He, Xi</creator><creator>Sun, Li</creator><creator>Lyu, Chufan</creator><creator>Wang, Xiaoting</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2676-9742</orcidid></search><sort><creationdate>2020</creationdate><title>Quantum locally linear embedding for nonlinear dimensionality reduction</title><author>He, Xi ; Sun, Li ; Lyu, Chufan ; Wang, Xiaoting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9d97a8aaa64e8202d3094e68c47d465127d4f480671b7bbd24d8531720cb4b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Data processing</topic><topic>Data Structures and Information Theory</topic><topic>Embedding</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Reduction</topic><topic>Spintronics</topic><topic>Subroutines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Lyu, Chufan</creatorcontrib><creatorcontrib>Wang, Xiaoting</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xi</au><au>Sun, Li</au><au>Lyu, Chufan</au><au>Wang, Xiaoting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum locally linear embedding for nonlinear dimensionality reduction</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2020</date><risdate>2020</risdate><volume>19</volume><issue>9</issue><artnum>309</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two implementations of the quantum locally linear embedding (QLLE) algorithm to perform the nonlinear dimensionality reduction on quantum devices. One implementation, the linear-algebra-based QLLE algorithm, utilizes quantum linear algebra subroutines to reduce the dimension of the given data. The other implementation, the variational quantum locally linear embedding (VQLLE) algorithm, utilizes a variational hybrid quantum-classical procedure to acquire the low-dimensional data. The classical LLE algorithm requires polynomial time complexity of
N
, where
N
is the global number of the original high-dimensional data. Compared with the classical LLE, the linear-algebra-based QLLE achieves quadratic speedup in the number and dimension of the given data. The VQLLE can be implemented on the near-term quantum devices in two different designs. In addition, the numerical experiments are presented to demonstrate that the two implementations in our work can achieve the procedure of locally linear embedding.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02818-y</doi><orcidid>https://orcid.org/0000-0003-2676-9742</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-0755 |
ispartof | Quantum information processing, 2020, Vol.19 (9), Article 309 |
issn | 1570-0755 1573-1332 |
language | eng |
recordid | cdi_proquest_journals_2436893615 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Data processing Data Structures and Information Theory Embedding Linear algebra Mathematical analysis Mathematical Physics Physics Physics and Astronomy Polynomials Quantum Computing Quantum Information Technology Quantum Physics Reduction Spintronics Subroutines |
title | Quantum locally linear embedding for nonlinear dimensionality reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20locally%20linear%20embedding%20for%20nonlinear%20dimensionality%20reduction&rft.jtitle=Quantum%20information%20processing&rft.au=He,%20Xi&rft.date=2020&rft.volume=19&rft.issue=9&rft.artnum=309&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02818-y&rft_dat=%3Cproquest_cross%3E2436893615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436893615&rft_id=info:pmid/&rfr_iscdi=true |