Quantum locally linear embedding for nonlinear dimensionality reduction

Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two imple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2020, Vol.19 (9), Article 309
Hauptverfasser: He, Xi, Sun, Li, Lyu, Chufan, Wang, Xiaoting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Quantum information processing
container_volume 19
creator He, Xi
Sun, Li
Lyu, Chufan
Wang, Xiaoting
description Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two implementations of the quantum locally linear embedding (QLLE) algorithm to perform the nonlinear dimensionality reduction on quantum devices. One implementation, the linear-algebra-based QLLE algorithm, utilizes quantum linear algebra subroutines to reduce the dimension of the given data. The other implementation, the variational quantum locally linear embedding (VQLLE) algorithm, utilizes a variational hybrid quantum-classical procedure to acquire the low-dimensional data. The classical LLE algorithm requires polynomial time complexity of N , where N is the global number of the original high-dimensional data. Compared with the classical LLE, the linear-algebra-based QLLE achieves quadratic speedup in the number and dimension of the given data. The VQLLE can be implemented on the near-term quantum devices in two different designs. In addition, the numerical experiments are presented to demonstrate that the two implementations in our work can achieve the procedure of locally linear embedding.
doi_str_mv 10.1007/s11128-020-02818-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2436893615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436893615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9d97a8aaa64e8202d3094e68c47d465127d4f480671b7bbd24d8531720cb4b3b3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPBU8V_OSNEmPsugqLIig55A06dKlTdakPfTfG7eCNw-PeR8zw2MQugV8DxiLhwQARJaY4FwSZDmfoRVUgpZAKTk_9fkkquoSXaV0wJgAl3yFtu-T9uM0FH1odN_PRd95p2PhBuOs7fy-aEMsfPC_e9sNzqcueN1341xEZ6dmzOM1umh1n9zNL67R5_PTx-al3L1tXzePu7KhUI9lbWuhpdaaMycJJpbimjkuGyYs4xWQDC2TmAswwhhLmJUVBUFwY5ihhq7R3eJ7jOFrcmlUhzDF_E1ShFEua8qhyiyysJoYUoquVcfYDTrOCrD6CUwtgakcmDoFpuYsoosoZbLfu_hn_Y_qG1axbqc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436893615</pqid></control><display><type>article</type><title>Quantum locally linear embedding for nonlinear dimensionality reduction</title><source>SpringerLink Journals - AutoHoldings</source><creator>He, Xi ; Sun, Li ; Lyu, Chufan ; Wang, Xiaoting</creator><creatorcontrib>He, Xi ; Sun, Li ; Lyu, Chufan ; Wang, Xiaoting</creatorcontrib><description>Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two implementations of the quantum locally linear embedding (QLLE) algorithm to perform the nonlinear dimensionality reduction on quantum devices. One implementation, the linear-algebra-based QLLE algorithm, utilizes quantum linear algebra subroutines to reduce the dimension of the given data. The other implementation, the variational quantum locally linear embedding (VQLLE) algorithm, utilizes a variational hybrid quantum-classical procedure to acquire the low-dimensional data. The classical LLE algorithm requires polynomial time complexity of N , where N is the global number of the original high-dimensional data. Compared with the classical LLE, the linear-algebra-based QLLE achieves quadratic speedup in the number and dimension of the given data. The VQLLE can be implemented on the near-term quantum devices in two different designs. In addition, the numerical experiments are presented to demonstrate that the two implementations in our work can achieve the procedure of locally linear embedding.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-020-02818-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Data processing ; Data Structures and Information Theory ; Embedding ; Linear algebra ; Mathematical analysis ; Mathematical Physics ; Physics ; Physics and Astronomy ; Polynomials ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Reduction ; Spintronics ; Subroutines</subject><ispartof>Quantum information processing, 2020, Vol.19 (9), Article 309</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9d97a8aaa64e8202d3094e68c47d465127d4f480671b7bbd24d8531720cb4b3b3</citedby><cites>FETCH-LOGICAL-c319t-9d97a8aaa64e8202d3094e68c47d465127d4f480671b7bbd24d8531720cb4b3b3</cites><orcidid>0000-0003-2676-9742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-020-02818-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-020-02818-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Lyu, Chufan</creatorcontrib><creatorcontrib>Wang, Xiaoting</creatorcontrib><title>Quantum locally linear embedding for nonlinear dimensionality reduction</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two implementations of the quantum locally linear embedding (QLLE) algorithm to perform the nonlinear dimensionality reduction on quantum devices. One implementation, the linear-algebra-based QLLE algorithm, utilizes quantum linear algebra subroutines to reduce the dimension of the given data. The other implementation, the variational quantum locally linear embedding (VQLLE) algorithm, utilizes a variational hybrid quantum-classical procedure to acquire the low-dimensional data. The classical LLE algorithm requires polynomial time complexity of N , where N is the global number of the original high-dimensional data. Compared with the classical LLE, the linear-algebra-based QLLE achieves quadratic speedup in the number and dimension of the given data. The VQLLE can be implemented on the near-term quantum devices in two different designs. In addition, the numerical experiments are presented to demonstrate that the two implementations in our work can achieve the procedure of locally linear embedding.</description><subject>Algorithms</subject><subject>Data processing</subject><subject>Data Structures and Information Theory</subject><subject>Embedding</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Reduction</subject><subject>Spintronics</subject><subject>Subroutines</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoHPBU8V_OSNEmPsugqLIig55A06dKlTdakPfTfG7eCNw-PeR8zw2MQugV8DxiLhwQARJaY4FwSZDmfoRVUgpZAKTk_9fkkquoSXaV0wJgAl3yFtu-T9uM0FH1odN_PRd95p2PhBuOs7fy-aEMsfPC_e9sNzqcueN1341xEZ6dmzOM1umh1n9zNL67R5_PTx-al3L1tXzePu7KhUI9lbWuhpdaaMycJJpbimjkuGyYs4xWQDC2TmAswwhhLmJUVBUFwY5ihhq7R3eJ7jOFrcmlUhzDF_E1ShFEua8qhyiyysJoYUoquVcfYDTrOCrD6CUwtgakcmDoFpuYsoosoZbLfu_hn_Y_qG1axbqc</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>He, Xi</creator><creator>Sun, Li</creator><creator>Lyu, Chufan</creator><creator>Wang, Xiaoting</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2676-9742</orcidid></search><sort><creationdate>2020</creationdate><title>Quantum locally linear embedding for nonlinear dimensionality reduction</title><author>He, Xi ; Sun, Li ; Lyu, Chufan ; Wang, Xiaoting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9d97a8aaa64e8202d3094e68c47d465127d4f480671b7bbd24d8531720cb4b3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Data processing</topic><topic>Data Structures and Information Theory</topic><topic>Embedding</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Reduction</topic><topic>Spintronics</topic><topic>Subroutines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Xi</creatorcontrib><creatorcontrib>Sun, Li</creatorcontrib><creatorcontrib>Lyu, Chufan</creatorcontrib><creatorcontrib>Wang, Xiaoting</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Xi</au><au>Sun, Li</au><au>Lyu, Chufan</au><au>Wang, Xiaoting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum locally linear embedding for nonlinear dimensionality reduction</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2020</date><risdate>2020</risdate><volume>19</volume><issue>9</issue><artnum>309</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two implementations of the quantum locally linear embedding (QLLE) algorithm to perform the nonlinear dimensionality reduction on quantum devices. One implementation, the linear-algebra-based QLLE algorithm, utilizes quantum linear algebra subroutines to reduce the dimension of the given data. The other implementation, the variational quantum locally linear embedding (VQLLE) algorithm, utilizes a variational hybrid quantum-classical procedure to acquire the low-dimensional data. The classical LLE algorithm requires polynomial time complexity of N , where N is the global number of the original high-dimensional data. Compared with the classical LLE, the linear-algebra-based QLLE achieves quadratic speedup in the number and dimension of the given data. The VQLLE can be implemented on the near-term quantum devices in two different designs. In addition, the numerical experiments are presented to demonstrate that the two implementations in our work can achieve the procedure of locally linear embedding.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-020-02818-y</doi><orcidid>https://orcid.org/0000-0003-2676-9742</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2020, Vol.19 (9), Article 309
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2436893615
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Data processing
Data Structures and Information Theory
Embedding
Linear algebra
Mathematical analysis
Mathematical Physics
Physics
Physics and Astronomy
Polynomials
Quantum Computing
Quantum Information Technology
Quantum Physics
Reduction
Spintronics
Subroutines
title Quantum locally linear embedding for nonlinear dimensionality reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20locally%20linear%20embedding%20for%20nonlinear%20dimensionality%20reduction&rft.jtitle=Quantum%20information%20processing&rft.au=He,%20Xi&rft.date=2020&rft.volume=19&rft.issue=9&rft.artnum=309&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-020-02818-y&rft_dat=%3Cproquest_cross%3E2436893615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436893615&rft_id=info:pmid/&rfr_iscdi=true