Quantum locally linear embedding for nonlinear dimensionality reduction

Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two imple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2020, Vol.19 (9), Article 309
Hauptverfasser: He, Xi, Sun, Li, Lyu, Chufan, Wang, Xiaoting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reducing the dimension of nonlinear data is crucial in data processing and visualization. The locally linear embedding algorithm (LLE) is specifically a representative nonlinear dimensionality reduction method with maintaining well the original manifold structure. In this paper, we present two implementations of the quantum locally linear embedding (QLLE) algorithm to perform the nonlinear dimensionality reduction on quantum devices. One implementation, the linear-algebra-based QLLE algorithm, utilizes quantum linear algebra subroutines to reduce the dimension of the given data. The other implementation, the variational quantum locally linear embedding (VQLLE) algorithm, utilizes a variational hybrid quantum-classical procedure to acquire the low-dimensional data. The classical LLE algorithm requires polynomial time complexity of N , where N is the global number of the original high-dimensional data. Compared with the classical LLE, the linear-algebra-based QLLE achieves quadratic speedup in the number and dimension of the given data. The VQLLE can be implemented on the near-term quantum devices in two different designs. In addition, the numerical experiments are presented to demonstrate that the two implementations in our work can achieve the procedure of locally linear embedding.
ISSN:1570-0755
1573-1332
DOI:10.1007/s11128-020-02818-y