Q-Learning based Maximum Power Extraction for Wind Energy Conversion System With Variable Wind Speed

This paper presents an intelligent wind speed sensor less maximum power point tracking (MPPT) method for a variable speed wind energy conversion system (VS-WECS) based on a Q-Learning algorithm. The Q-Learning algorithm consists of Q-values for each state action pair which is updated using reward an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2020-09, Vol.35 (3), p.1160-1170
Hauptverfasser: Kushwaha, Ashish, Gopal, Madan, Singh, Bhim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an intelligent wind speed sensor less maximum power point tracking (MPPT) method for a variable speed wind energy conversion system (VS-WECS) based on a Q-Learning algorithm. The Q-Learning algorithm consists of Q-values for each state action pair which is updated using reward and learning rate. Inputs to define these states are electrical power received by grid and rotational speed of the generator. In this paper, Q-Learning is equipped with peak detection technique, which drives the system towards peak power even if learning is incomplete which makes the real time tracking faster. To make the learning uniform, each state has its separate learning parameter instead of common learning parameter for all states as is the case in conventional Q-Learning. Therefore, if half learned system is running at peak point, it does not affect the learning of unvisited states. Also, wind speed change detection is combined with proposed algorithm which makes it eligible to work for varying wind speed conditions. In addition, the information of wind turbine characteristics and wind speed measurement is not needed. The algorithm is verified through simulations and experimentation and also compared with perturbation and observation (P&O) algorithm.
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2020.2990937