Thermal oxidation characteristics of Fex(CoCrMnNi)100-x medium and high-entropy alloys

The thermal oxidation behavior of Fex(CoCrMnNi)100-x high-entropy alloys (x = 20 and 40 at.%) and medium-entropy alloy (x = 60 at.%) at temperatures ranging from 900 °C to 1100 °C under air atmosphere was investigated. The oxidation kinetics of the alloys followed the parabolic law, indicated by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intermetallics 2020-05, Vol.120, p.1, Article 106757
Hauptverfasser: Agustianingrum, Maya Putri, Latief, Fahamsyah Hamdan, Park, Nokeun, Lee, Unhae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 1
container_title Intermetallics
container_volume 120
creator Agustianingrum, Maya Putri
Latief, Fahamsyah Hamdan
Park, Nokeun
Lee, Unhae
description The thermal oxidation behavior of Fex(CoCrMnNi)100-x high-entropy alloys (x = 20 and 40 at.%) and medium-entropy alloy (x = 60 at.%) at temperatures ranging from 900 °C to 1100 °C under air atmosphere was investigated. The oxidation kinetics of the alloys followed the parabolic law, indicated by the increase of oxidation rate constants with increasing Fe content and temperature. The addition of Fe content lowered the configurational entropy and activation energy of the alloys, supporting the acceleration of metal atoms diffusion. Furthermore, the oxide scales formed on the surface were strongly dependent on the alloy composition. In general, a Cr2O3 inner layer, spinels (NiCr2O4 and CoMn2O4) as intermediate layers, and the outer layers of Fe3O4 and Mn3O4 were formed after oxidation at 900 °C in all alloys. On the other hand, severe internal oxidation and pores were observed in the alloy containing 60 at.% of Fe after oxidation at 1100 °C. In addition, the pores were formed due to the Kirkendall effect, acting as diffusion path and reaction place which may facilitate the oxidation process. [Display omitted] •The increase of Fe content decreases the oxidation resistance in Fex(CoCrMnNi)100-x.•The oxidation activation energy of the alloy decreases with the addition Fe content.•Oxide scale of the alloys mainly consist of Cr-based, Fe-based and Mn-based oxide.•Fe20 and Fe40 maintain a similar type of oxide scale in all oxidation temperatures.•In Fe60, the oxidation at 1100 °C is indicated by the thick scale of Fe3O4 and Mn3O4.
doi_str_mv 10.1016/j.intermet.2020.106757
format Article
fullrecord <record><control><sourceid>proquest_elsev</sourceid><recordid>TN_cdi_proquest_journals_2436430904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979519311823</els_id><sourcerecordid>2436430904</sourcerecordid><originalsourceid>FETCH-LOGICAL-e155t-626a35bcbfccd27cd44dc8ef9d71e94b5816c4376cac7fbceeae542e088dfc613</originalsourceid><addsrcrecordid>eNo1kM1OwzAQhC0EEqXwCsgSFzik2Il_khuoooBU4FK4Wo69IY7SGGwXtW9PqsJppdXszM6H0CUlM0qouO1mbkgQ1pBmOcn3SyG5PEITWsoqIzkVx2hCKiGySlb8FJ3F2BFCJSn4BH2s2vFU99hvndXJ-QGbVgdtRkcXkzMR-wYvYHs99_PwMry6G0pItsVrsG6zxnqwuHWfbQZDCv5rh3Xf-108RyeN7iNc_M0pel88rOZP2fLt8Xl-v8yAcp4ykQtd8NrUjTE2l8YyZk0JTWUlhYrVvKTCsEIKo41sagOggbMcSFnaxghaTNHVwfcr-O8NxKQ6vwnDGKlyVghWkIqwUXV3UMH4yo-DoKJxMJixQgCTlPVOUaL2NFWn_mmqPU11oFn8Ahu9bRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436430904</pqid></control><display><type>article</type><title>Thermal oxidation characteristics of Fex(CoCrMnNi)100-x medium and high-entropy alloys</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Agustianingrum, Maya Putri ; Latief, Fahamsyah Hamdan ; Park, Nokeun ; Lee, Unhae</creator><creatorcontrib>Agustianingrum, Maya Putri ; Latief, Fahamsyah Hamdan ; Park, Nokeun ; Lee, Unhae</creatorcontrib><description>The thermal oxidation behavior of Fex(CoCrMnNi)100-x high-entropy alloys (x = 20 and 40 at.%) and medium-entropy alloy (x = 60 at.%) at temperatures ranging from 900 °C to 1100 °C under air atmosphere was investigated. The oxidation kinetics of the alloys followed the parabolic law, indicated by the increase of oxidation rate constants with increasing Fe content and temperature. The addition of Fe content lowered the configurational entropy and activation energy of the alloys, supporting the acceleration of metal atoms diffusion. Furthermore, the oxide scales formed on the surface were strongly dependent on the alloy composition. In general, a Cr2O3 inner layer, spinels (NiCr2O4 and CoMn2O4) as intermediate layers, and the outer layers of Fe3O4 and Mn3O4 were formed after oxidation at 900 °C in all alloys. On the other hand, severe internal oxidation and pores were observed in the alloy containing 60 at.% of Fe after oxidation at 1100 °C. In addition, the pores were formed due to the Kirkendall effect, acting as diffusion path and reaction place which may facilitate the oxidation process. [Display omitted] •The increase of Fe content decreases the oxidation resistance in Fex(CoCrMnNi)100-x.•The oxidation activation energy of the alloy decreases with the addition Fe content.•Oxide scale of the alloys mainly consist of Cr-based, Fe-based and Mn-based oxide.•Fe20 and Fe40 maintain a similar type of oxide scale in all oxidation temperatures.•In Fe60, the oxidation at 1100 °C is indicated by the thick scale of Fe3O4 and Mn3O4.</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2020.106757</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Acceleration ; Activation energy ; Alloys ; Cobalt compounds ; Diffusion ; Diffusion effects ; Entropy ; Entropy of activation ; High entropy alloys ; Internal oxidation ; Iron oxides ; Kirkendall effect ; Medium entropy alloys ; Microstructure ; Oxidation ; Oxidation rate ; Rate constants ; Reaction kinetics ; Scale (corrosion) ; Scanning electron microscopy</subject><ispartof>Intermetallics, 2020-05, Vol.120, p.1, Article 106757</ispartof><rights>2020</rights><rights>Copyright Elsevier BV May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.intermet.2020.106757$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids></links><search><creatorcontrib>Agustianingrum, Maya Putri</creatorcontrib><creatorcontrib>Latief, Fahamsyah Hamdan</creatorcontrib><creatorcontrib>Park, Nokeun</creatorcontrib><creatorcontrib>Lee, Unhae</creatorcontrib><title>Thermal oxidation characteristics of Fex(CoCrMnNi)100-x medium and high-entropy alloys</title><title>Intermetallics</title><description>The thermal oxidation behavior of Fex(CoCrMnNi)100-x high-entropy alloys (x = 20 and 40 at.%) and medium-entropy alloy (x = 60 at.%) at temperatures ranging from 900 °C to 1100 °C under air atmosphere was investigated. The oxidation kinetics of the alloys followed the parabolic law, indicated by the increase of oxidation rate constants with increasing Fe content and temperature. The addition of Fe content lowered the configurational entropy and activation energy of the alloys, supporting the acceleration of metal atoms diffusion. Furthermore, the oxide scales formed on the surface were strongly dependent on the alloy composition. In general, a Cr2O3 inner layer, spinels (NiCr2O4 and CoMn2O4) as intermediate layers, and the outer layers of Fe3O4 and Mn3O4 were formed after oxidation at 900 °C in all alloys. On the other hand, severe internal oxidation and pores were observed in the alloy containing 60 at.% of Fe after oxidation at 1100 °C. In addition, the pores were formed due to the Kirkendall effect, acting as diffusion path and reaction place which may facilitate the oxidation process. [Display omitted] •The increase of Fe content decreases the oxidation resistance in Fex(CoCrMnNi)100-x.•The oxidation activation energy of the alloy decreases with the addition Fe content.•Oxide scale of the alloys mainly consist of Cr-based, Fe-based and Mn-based oxide.•Fe20 and Fe40 maintain a similar type of oxide scale in all oxidation temperatures.•In Fe60, the oxidation at 1100 °C is indicated by the thick scale of Fe3O4 and Mn3O4.</description><subject>Acceleration</subject><subject>Activation energy</subject><subject>Alloys</subject><subject>Cobalt compounds</subject><subject>Diffusion</subject><subject>Diffusion effects</subject><subject>Entropy</subject><subject>Entropy of activation</subject><subject>High entropy alloys</subject><subject>Internal oxidation</subject><subject>Iron oxides</subject><subject>Kirkendall effect</subject><subject>Medium entropy alloys</subject><subject>Microstructure</subject><subject>Oxidation</subject><subject>Oxidation rate</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Scale (corrosion)</subject><subject>Scanning electron microscopy</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo1kM1OwzAQhC0EEqXwCsgSFzik2Il_khuoooBU4FK4Wo69IY7SGGwXtW9PqsJppdXszM6H0CUlM0qouO1mbkgQ1pBmOcn3SyG5PEITWsoqIzkVx2hCKiGySlb8FJ3F2BFCJSn4BH2s2vFU99hvndXJ-QGbVgdtRkcXkzMR-wYvYHs99_PwMry6G0pItsVrsG6zxnqwuHWfbQZDCv5rh3Xf-108RyeN7iNc_M0pel88rOZP2fLt8Xl-v8yAcp4ykQtd8NrUjTE2l8YyZk0JTWUlhYrVvKTCsEIKo41sagOggbMcSFnaxghaTNHVwfcr-O8NxKQ6vwnDGKlyVghWkIqwUXV3UMH4yo-DoKJxMJixQgCTlPVOUaL2NFWn_mmqPU11oFn8Ahu9bRo</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Agustianingrum, Maya Putri</creator><creator>Latief, Fahamsyah Hamdan</creator><creator>Park, Nokeun</creator><creator>Lee, Unhae</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>202005</creationdate><title>Thermal oxidation characteristics of Fex(CoCrMnNi)100-x medium and high-entropy alloys</title><author>Agustianingrum, Maya Putri ; Latief, Fahamsyah Hamdan ; Park, Nokeun ; Lee, Unhae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e155t-626a35bcbfccd27cd44dc8ef9d71e94b5816c4376cac7fbceeae542e088dfc613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Activation energy</topic><topic>Alloys</topic><topic>Cobalt compounds</topic><topic>Diffusion</topic><topic>Diffusion effects</topic><topic>Entropy</topic><topic>Entropy of activation</topic><topic>High entropy alloys</topic><topic>Internal oxidation</topic><topic>Iron oxides</topic><topic>Kirkendall effect</topic><topic>Medium entropy alloys</topic><topic>Microstructure</topic><topic>Oxidation</topic><topic>Oxidation rate</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Scale (corrosion)</topic><topic>Scanning electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agustianingrum, Maya Putri</creatorcontrib><creatorcontrib>Latief, Fahamsyah Hamdan</creatorcontrib><creatorcontrib>Park, Nokeun</creatorcontrib><creatorcontrib>Lee, Unhae</creatorcontrib><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agustianingrum, Maya Putri</au><au>Latief, Fahamsyah Hamdan</au><au>Park, Nokeun</au><au>Lee, Unhae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal oxidation characteristics of Fex(CoCrMnNi)100-x medium and high-entropy alloys</atitle><jtitle>Intermetallics</jtitle><date>2020-05</date><risdate>2020</risdate><volume>120</volume><spage>1</spage><pages>1-</pages><artnum>106757</artnum><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>The thermal oxidation behavior of Fex(CoCrMnNi)100-x high-entropy alloys (x = 20 and 40 at.%) and medium-entropy alloy (x = 60 at.%) at temperatures ranging from 900 °C to 1100 °C under air atmosphere was investigated. The oxidation kinetics of the alloys followed the parabolic law, indicated by the increase of oxidation rate constants with increasing Fe content and temperature. The addition of Fe content lowered the configurational entropy and activation energy of the alloys, supporting the acceleration of metal atoms diffusion. Furthermore, the oxide scales formed on the surface were strongly dependent on the alloy composition. In general, a Cr2O3 inner layer, spinels (NiCr2O4 and CoMn2O4) as intermediate layers, and the outer layers of Fe3O4 and Mn3O4 were formed after oxidation at 900 °C in all alloys. On the other hand, severe internal oxidation and pores were observed in the alloy containing 60 at.% of Fe after oxidation at 1100 °C. In addition, the pores were formed due to the Kirkendall effect, acting as diffusion path and reaction place which may facilitate the oxidation process. [Display omitted] •The increase of Fe content decreases the oxidation resistance in Fex(CoCrMnNi)100-x.•The oxidation activation energy of the alloy decreases with the addition Fe content.•Oxide scale of the alloys mainly consist of Cr-based, Fe-based and Mn-based oxide.•Fe20 and Fe40 maintain a similar type of oxide scale in all oxidation temperatures.•In Fe60, the oxidation at 1100 °C is indicated by the thick scale of Fe3O4 and Mn3O4.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2020.106757</doi></addata></record>
fulltext fulltext
identifier ISSN: 0966-9795
ispartof Intermetallics, 2020-05, Vol.120, p.1, Article 106757
issn 0966-9795
1879-0216
language eng
recordid cdi_proquest_journals_2436430904
source Elsevier ScienceDirect Journals Complete
subjects Acceleration
Activation energy
Alloys
Cobalt compounds
Diffusion
Diffusion effects
Entropy
Entropy of activation
High entropy alloys
Internal oxidation
Iron oxides
Kirkendall effect
Medium entropy alloys
Microstructure
Oxidation
Oxidation rate
Rate constants
Reaction kinetics
Scale (corrosion)
Scanning electron microscopy
title Thermal oxidation characteristics of Fex(CoCrMnNi)100-x medium and high-entropy alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_elsev&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20oxidation%20characteristics%20of%20Fex(CoCrMnNi)100-x%20medium%20and%20high-entropy%20alloys&rft.jtitle=Intermetallics&rft.au=Agustianingrum,%20Maya%20Putri&rft.date=2020-05&rft.volume=120&rft.spage=1&rft.pages=1-&rft.artnum=106757&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2020.106757&rft_dat=%3Cproquest_elsev%3E2436430904%3C/proquest_elsev%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436430904&rft_id=info:pmid/&rft_els_id=S0966979519311823&rfr_iscdi=true