Thermal oxidation characteristics of Fex(CoCrMnNi)100-x medium and high-entropy alloys
The thermal oxidation behavior of Fex(CoCrMnNi)100-x high-entropy alloys (x = 20 and 40 at.%) and medium-entropy alloy (x = 60 at.%) at temperatures ranging from 900 °C to 1100 °C under air atmosphere was investigated. The oxidation kinetics of the alloys followed the parabolic law, indicated by the...
Gespeichert in:
Veröffentlicht in: | Intermetallics 2020-05, Vol.120, p.1, Article 106757 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The thermal oxidation behavior of Fex(CoCrMnNi)100-x high-entropy alloys (x = 20 and 40 at.%) and medium-entropy alloy (x = 60 at.%) at temperatures ranging from 900 °C to 1100 °C under air atmosphere was investigated. The oxidation kinetics of the alloys followed the parabolic law, indicated by the increase of oxidation rate constants with increasing Fe content and temperature. The addition of Fe content lowered the configurational entropy and activation energy of the alloys, supporting the acceleration of metal atoms diffusion. Furthermore, the oxide scales formed on the surface were strongly dependent on the alloy composition. In general, a Cr2O3 inner layer, spinels (NiCr2O4 and CoMn2O4) as intermediate layers, and the outer layers of Fe3O4 and Mn3O4 were formed after oxidation at 900 °C in all alloys. On the other hand, severe internal oxidation and pores were observed in the alloy containing 60 at.% of Fe after oxidation at 1100 °C. In addition, the pores were formed due to the Kirkendall effect, acting as diffusion path and reaction place which may facilitate the oxidation process.
[Display omitted]
•The increase of Fe content decreases the oxidation resistance in Fex(CoCrMnNi)100-x.•The oxidation activation energy of the alloy decreases with the addition Fe content.•Oxide scale of the alloys mainly consist of Cr-based, Fe-based and Mn-based oxide.•Fe20 and Fe40 maintain a similar type of oxide scale in all oxidation temperatures.•In Fe60, the oxidation at 1100 °C is indicated by the thick scale of Fe3O4 and Mn3O4. |
---|---|
ISSN: | 0966-9795 1879-0216 |
DOI: | 10.1016/j.intermet.2020.106757 |