ImpediBands: Body Coupled Bio-Impedance Patches for Physiological Sensing Proof of Concept

Continuous and robust monitoring of physiological signals is essential in improving the diagnosis and management of cardiovascular and respiratory diseases. The state-of-the-art systems for monitoring vital signs such as heart rate, heart rate variability, respiration rate, and other hemodynamic and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2020-08, Vol.14 (4), p.757-774
Hauptverfasser: Sel, Kaan, Ibrahim, Bassem, Jafari, Roozbeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Continuous and robust monitoring of physiological signals is essential in improving the diagnosis and management of cardiovascular and respiratory diseases. The state-of-the-art systems for monitoring vital signs such as heart rate, heart rate variability, respiration rate, and other hemodynamic and respiratory parameters use often bulky and obtrusive systems or depend on wearables with limited sensing methods based on repetitive properties of the signals rather than the morphology. Moreover, multiple devices and modalities are typically needed for capturing various vital signs simultaneously. In this paper, we introduce ImpediBands: small-sized distributed smart bio-impedance (Bio-Z) patches, where the communication between the patches is established through the human body, eliminating the need for electrical wires that would create a common potential point between sensors. We use ImpediBands to collect instantaneous measurements from multiple locations over the chest at the same time. We propose a blind source separation (BSS) technique based on the second-order blind identification (SOBI) followed by signal reconstruction to extract heart and lung activities from the Bio-Z signals. Using the separated source signals, we demonstrate the performance of our system via providing strong confidence in the estimation of heart and respiration rates with low RMSE (HR RMSE = 0.579 beats per minute, RR RMSE = 0.285 breaths per minute), and high correlation coefficients ( r HR = 0.948, r RR = 0.921).
ISSN:1932-4545
1940-9990
DOI:10.1109/TBCAS.2020.2995810