On Predictive Distribution of K-Inflated Poisson Models with and Without Additional Information

This   paper   addresses  different   approaches  in  finding   the   Bayesian predictive distribution of a random  variable from a Poisson  model that  can handle  count data  with an inflated  value  of K ∈ N, known as the KIP  model. We explore  how we can  use  other  source  of additional informat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista Colombiana de estadística 2020-07, Vol.43 (2), p.173-182
Hauptverfasser: Sadeghkhani, Abdolnasser, Ahmed, S. Ejaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This   paper   addresses  different   approaches  in  finding   the   Bayesian predictive distribution of a random  variable from a Poisson  model that  can handle  count data  with an inflated  value  of K ∈ N, known as the KIP  model. We explore  how we can  use  other  source  of additional information to  find such  an estimator. More specifically, we find a Bayesian estimator of future density of random  variable Y1 , based  on observable X1  from the K1 IP(p1 , λ1 ) model, with and without assuming that  there exists  another random  variable X2 , from the K2 IP(p2 , λ2 ) model, independent of X1 , provided λ1  ≥ λ2 , and compare their  performance using  simulation method.
ISSN:0120-1751
2389-8976
DOI:10.15446/rce.v43n2.81979