Twenty years of supramolecular solvents in sample preparation for chromatography: achievements and challenges ahead

Supramolecular solvents (SUPRAS) have progressively become a suitable alternative to organic solvents for sample preparation in chromatographic analysis. The inherent properties of these nanostructured solvents (e.g. different polarity microenvironments, multiple binding sites, possibility of tailor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2020-09, Vol.412 (24), p.6037-6058
1. Verfasser: Rubio, Soledad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Supramolecular solvents (SUPRAS) have progressively become a suitable alternative to organic solvents for sample preparation in chromatographic analysis. The inherent properties of these nanostructured solvents (e.g. different polarity microenvironments, multiple binding sites, possibility of tailoring their properties, etc.) offer multiple opportunities for the development of innovative sample treatment platforms not approachable by conventional solvents. In this review, major achievements attained in the combination SUPRAS–chromatography in the last 20 years as well as the challenges that should be addressed in the near future are critically discussed. Among achievements, particular attention is paid to the theoretical and practical knowledge gained that has helped make substantial progress in the area. In this respect, advances in the understanding of the mechanisms involved in SUPRAS formation and SUPRAS–solute interactions driving extractions are discussed, with a view to the setting up of knowledge-based extraction procedures. Likewise, the strategies followed to improve the compatibility of SUPRAS extracts with liquid and gas chromatography and adapt SUPRAS-based extractions to different formats are presented. Ongoing efforts to apply SUPRAS in multicomponent extractions and synthesize tailored SUPRAS for the development of innovative sample treatments are highlighted. Among challenges identified, discussion is focused on the automation of SUPRAS-based sample treatment and the elucidation of SUPRAS nanostructures, which are considered essential for their acceptance in routine labs and the design of tailored SUPRAS with programmed functions. Graphical abstract
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-020-02559-y