On a Generalization of the Hermite–Hadamard Inequality and Applications in Convex Geometry
In this paper, we show the following result: if C is an n-dimensional 0-symmetric convex compact set, f : C → [ 0 , ∞ ) is concave, and ϕ : [ 0 , ∞ ) → [ 0 , ∞ ) is not identically zero, convex, with ϕ ( 0 ) = 0 , then 1 | C | ∫ C ϕ ( f ( x ) ) d x ≤ 1 2 ∫ - 1 1 ϕ ( f ( 0 ) ( 1 + t ) ) d t , where |...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2020-10, Vol.17 (5), Article 146 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we show the following result: if
C
is an n-dimensional 0-symmetric convex compact set,
f
:
C
→
[
0
,
∞
)
is concave, and
ϕ
:
[
0
,
∞
)
→
[
0
,
∞
)
is not identically zero, convex, with
ϕ
(
0
)
=
0
, then
1
|
C
|
∫
C
ϕ
(
f
(
x
)
)
d
x
≤
1
2
∫
-
1
1
ϕ
(
f
(
0
)
(
1
+
t
)
)
d
t
,
where |
C
| denotes the volume of
C
. If
ϕ
is strictly convex, equality holds if and only if
f
is affine,
C
is a generalized symmetric cylinder and
f
becomes 0 at one of the basis of
C
. We exploit this inequality to answer a question of Francisco Santos on estimating the volume of a convex set by means of the volume of a central section of it. Second, we also derive a corresponding estimate for log-concave functions. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-020-01587-3 |