Radiative–conductive transfer equation in spherical geometry: arithmetic stability for decomposition using the condition number criterion

The radiative–conductive transfer equation in the S N approximation for spherical geometry is solved using a modified decomposition method. The focus of this work is to show how to distribute the source terms in the recursive equation system in order to guarantee arithmetic stability and thus numeri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mathematics 2020-08, Vol.123 (1), p.149-163
Hauptverfasser: Ladeia, Cibele A., Bodmann, Bardo E. J., Vilhena, Marco T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The radiative–conductive transfer equation in the S N approximation for spherical geometry is solved using a modified decomposition method. The focus of this work is to show how to distribute the source terms in the recursive equation system in order to guarantee arithmetic stability and thus numerical convergence of the obtained solution, guided by a condition number criterion. Some examples are compared with results from literature and parameter combinations are analyzed, for which the condition number analysis indicates convergence of the solutions obtained by the recursive scheme.
ISSN:0022-0833
1573-2703
DOI:10.1007/s10665-020-10059-2