On the significance of sulphuric acid dissociation in the modelling of vanadium redox flow batteries

A recent asymptotic model for the operation of a vanadium redox flow battery (VRFB) is extended to include the dissociation of sulphuric acid—a bulk chemical reaction that occurs in the battery’s porous flow-through electrodes, but which is often omitted from VRFB models. Using asymptotic methods an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mathematics 2020-08, Vol.123 (1), p.173-203
Hauptverfasser: Vynnycky, M., Assunção, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A recent asymptotic model for the operation of a vanadium redox flow battery (VRFB) is extended to include the dissociation of sulphuric acid—a bulk chemical reaction that occurs in the battery’s porous flow-through electrodes, but which is often omitted from VRFB models. Using asymptotic methods and time-dependent two-dimensional numerical simulations, we show that the charge–discharge curve for the model with the dissociation reaction is almost identical to that for the model without, even though the concentrations of the ionic species in the recirculating tanks, although not the state of charge, are considerably different in the two models. The ability of the asymptotic model to extract both the qualitative and quantitative behaviour of the considerably more time-consuming numerical simulations correctly indicates that it should be possible to add further physical phenomena to the model without incurring significant computational expense.
ISSN:0022-0833
1573-2703
DOI:10.1007/s10665-020-10061-8