Generalized Framework for the Design of Eco-Industrial Parks: Case Study of End-of-Life Vehicles
Eco-industrial parks (EIPs) are promoting a shift from the traditional linear model to the circular model, where industrial symbiosis plays an important role in encouraging the exchange of materials, energy, and waste. This paper proposes a generalized framework to design eco-industrial parks, and i...
Gespeichert in:
Veröffentlicht in: | Sustainability 2020-08, Vol.12 (16), p.6612 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Eco-industrial parks (EIPs) are promoting a shift from the traditional linear model to the circular model, where industrial symbiosis plays an important role in encouraging the exchange of materials, energy, and waste. This paper proposes a generalized framework to design eco-industrial parks, and illustrates it with regard to the end-of-life vehicle problem (ELV). An eco-industrial park for end-of-life vehicles (EIP-4-ELVs) creates synergy in the network that leverages waste reduction and efficiently uses resources. The performance of the proposed framework is investigated along with the interactions between nodes. The proposed framework consists of five steps: (1) finding motivation for EIP, (2) identifying all entities with industrial symbiosis, (3) pinpointing the anchor entity, (4) determining industrial symbiosis between at least three entities and two exchange flows, and (5) defining exchange-flow types. The two last steps are connected by a feedback loop to allow future exchange flows. The proposed framework serves as a guideline for decision makers during the first stages of developing EIPs. Furthermore, the framework can be linked to car-design software to predict the recyclability of vehicle components and aid in manufacturing vehicles optimized for recycling. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su12166612 |