Z-graded Hom-Lie Superalgebras

In this paper we introduce the notions of Z-graded hom-Lie superalgebras and we show that there is a maximal (resp., minimal) Z-graded hom-Lie superalgebra for a given local hom-Lie superalgebra. Morever, we introduce the invariant bilinear forms on a Z-graded hom-Lie superalgebra and we prove that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: Farhangdoost, M R, Attari Polsangi, A R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce the notions of Z-graded hom-Lie superalgebras and we show that there is a maximal (resp., minimal) Z-graded hom-Lie superalgebra for a given local hom-Lie superalgebra. Morever, we introduce the invariant bilinear forms on a Z-graded hom-Lie superalgebra and we prove that a consistent supersymmetric {\alpha}-invariant form on the local part can be extended uniquely to a bilinear form with the same property on the whole Z-graded hom-Lie superalgebra. Furthermore, we check the condition in which the Z-graded hom-Lie superalgebra is simple.
ISSN:2331-8422