Z-graded Hom-Lie Superalgebras
In this paper we introduce the notions of Z-graded hom-Lie superalgebras and we show that there is a maximal (resp., minimal) Z-graded hom-Lie superalgebra for a given local hom-Lie superalgebra. Morever, we introduce the invariant bilinear forms on a Z-graded hom-Lie superalgebra and we prove that...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce the notions of Z-graded hom-Lie superalgebras and we show that there is a maximal (resp., minimal) Z-graded hom-Lie superalgebra for a given local hom-Lie superalgebra. Morever, we introduce the invariant bilinear forms on a Z-graded hom-Lie superalgebra and we prove that a consistent supersymmetric {\alpha}-invariant form on the local part can be extended uniquely to a bilinear form with the same property on the whole Z-graded hom-Lie superalgebra. Furthermore, we check the condition in which the Z-graded hom-Lie superalgebra is simple. |
---|---|
ISSN: | 2331-8422 |