Chrome Dino Run using Reinforcement Learning

Reinforcement Learning is one of the most advanced set of algorithms known to mankind which can compete in games and perform at par or even better than humans. In this paper we study most popular model free reinforcement learning algorithms along with convolutional neural network to train the agent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-08
Hauptverfasser: Marwah, Divyanshu, Srivastava, Sneha, Gupta, Anusha, Verma, Shruti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reinforcement Learning is one of the most advanced set of algorithms known to mankind which can compete in games and perform at par or even better than humans. In this paper we study most popular model free reinforcement learning algorithms along with convolutional neural network to train the agent for playing the game of Chrome Dino Run. We have used two of the popular temporal difference approaches namely Deep Q-Learning, and Expected SARSA and also implemented Double DQN model to train the agent and finally compare the scores with respect to the episodes and convergence of algorithms with respect to timesteps.
ISSN:2331-8422