Symmetry results for critical anisotropic p-Laplacian equations in convex cones

Given n ≥ 2 and 1 < p < n , we consider the critical p -Laplacian equation Δ p u + u p ∗ - 1 = 0 , which corresponds to critical points of the Sobolev inequality. Exploiting the moving planes method, it has been recently shown that positive solutions in the whole space are classified. Since th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2020-06, Vol.30 (3), p.770-803
Hauptverfasser: Ciraolo, Giulio, Figalli, Alessio, Roncoroni, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given n ≥ 2 and 1 < p < n , we consider the critical p -Laplacian equation Δ p u + u p ∗ - 1 = 0 , which corresponds to critical points of the Sobolev inequality. Exploiting the moving planes method, it has been recently shown that positive solutions in the whole space are classified. Since the moving plane method strongly relies on the symmetries of the equation and the domain, in this paper we provide a new approach to this Liouville-type problem that allows us to give a complete classification of solutions in an anisotropic setting. More precisely, we characterize solutions to the critical p -Laplacian equation induced by a smooth norm inside any convex cone. In addition, using optimal transport, we prove a general class of (weighted) anisotropic Sobolev inequalities inside arbitrary convex cones.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-020-00535-3