The influence of polypropylene-block/graft-polycaprolactone copolymers on melt rheology, morphology, and dielectric properties of polypropylene/polycarbonate blends
The paper discusses the relationship between rheology and morphology of immiscible polypropylene (matrix))/polycarbonate (dispersed phase) blends compatibilized with novel polypropylene-polycaprolactone block and graft copolymers. Transmission electron microscopy (TEM) experiments revealed uniform d...
Gespeichert in:
Veröffentlicht in: | Rheologica acta 2020-09, Vol.59 (9), p.601-619 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper discusses the relationship between rheology and morphology of immiscible polypropylene (matrix))/polycarbonate (dispersed phase) blends compatibilized with novel polypropylene-polycaprolactone block and graft copolymers. Transmission electron microscopy (TEM) experiments revealed uniform droplet morphologies and a reduction of the average size of the dispersed phase upon addition of the compatibilizer. The results suggested the influence of the molecular weight distribution (MWD)/chemical composition distribution (CCD) and topology of the compatibilizer on the compatibilizing performance. Graft copolymers were found to be most effective in reducing the size of the dispersed phase, whereas the performance of block copolymers appeared to be highly dependent on the block length of PP. Small-amplitude oscillatory rheological experiments revealed an increase in elasticity at low frequencies caused by the interfacial interactions induced by the compatibilizer. The effect was quantified using the relaxation time spectrums that displayed the additional peak at longer relaxation times via Gramespacher-Meissner method. Broadband dielectric spectroscopy (BDS) revealed the influence of the copolymer architecture and molecular weight of the polypropylene blocks on the properties of the interfacial polarization, which was in line with both rheology and morphology data.
Graphical abstract
. |
---|---|
ISSN: | 0035-4511 1435-1528 |
DOI: | 10.1007/s00397-020-01223-7 |