Potential of deep learning in assessing pneumoconiosis depicted on digital chest radiography
ObjectivesTo investigate the potential of deep learning in assessing pneumoconiosis depicted on digital chest radiographs and to compare its performance with certified radiologists.MethodsWe retrospectively collected a dataset consisting of 1881 chest X-ray images in the form of digital radiography....
Gespeichert in:
Veröffentlicht in: | Occupational and environmental medicine (London, England) England), 2020-09, Vol.77 (9), p.597-602 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ObjectivesTo investigate the potential of deep learning in assessing pneumoconiosis depicted on digital chest radiographs and to compare its performance with certified radiologists.MethodsWe retrospectively collected a dataset consisting of 1881 chest X-ray images in the form of digital radiography. These images were acquired in a screening setting on subjects who had a history of working in an environment that exposed them to harmful dust. Among these subjects, 923 were diagnosed with pneumoconiosis, and 958 were normal. To identify the subjects with pneumoconiosis, we applied a classical deep convolutional neural network (CNN) called Inception-V3 to these image sets and validated the classification performance of the trained models using the area under the receiver operating characteristic curve (AUC). In addition, we asked two certified radiologists to independently interpret the images in the testing dataset and compared their performance with the computerised scheme.ResultsThe Inception-V3 CNN architecture, which was trained on the combination of the three image sets, achieved an AUC of 0.878 (95% CI 0.811 to 0.946). The performance of the two radiologists in terms of AUC was 0.668 (95% CI 0.555 to 0.782) and 0.772 (95% CI 0.677 to 0.866), respectively. The agreement between the two readers was moderate (kappa: 0.423, p |
---|---|
ISSN: | 1351-0711 1470-7926 |
DOI: | 10.1136/oemed-2019-106386 |